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Abstract
Mechanical measurements of cells can provide unique insights into cell state and disease processes. The overall mechanical 
properties of cells can be heavily affected by the stiffest organelle, the nucleus. However, it is challenging to fully characterize 
internal nuclear structures in most cell mechanical measurement platforms. Here, we demonstrate single-cell deformability 
measurements of whole cells and stained nuclei in a fluorescence imaging flow cytometry platform. We also introduce bend-
ing energy derived metrics as a way to normalize measurements of cytoskeletal cortex and nuclear shape changes of cells and 
demonstrate the utility of relative deformability distributions to characterize populations of cells. We apply the platform to 
measure changes in cell biophysical properties during the process of NETosis, whereby neutrophils undergo drastic nuclear 
restructuring. We characterize cell size, deformability, and nuclear structure changes and their correlations in thousands of 
neutrophils undergoing NETosis, a process implicated in development of critical disease states, such as sepsis. This platform 
can aid in understanding heterogeneity in deformability in cell populations and how this may be influenced by nuclear or 
internal structure changes.
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Introduction

In recent decades, tools measuring the mechanical proper-
ties of cells have grown in sophistication and diversity [1]. 
Cell mechanical phenotypes are the culmination of intracel-
lular components such as the cytoskeleton and nucleus. As 
these components reorganize or change form or function, the 
cell’s mechanical properties can change with them. These 
changes have been related to changes in cell cycle [2], leu-
kocyte activation [3], cancer malignancy [4], and cell differ-
entiation [5, 6], among many others. A variety of tools have 
been used to probe cells’ response to force, such as atomic 
force microscopy (AFM) [7], micropipette aspiration [8], 
or optical tweezers [9], but all these methods can be labor 
intensive, affected by user variability, and do not scale well. 
Recently, several microfluidics methods have been devel-
oped that allow cells to be measured robustly, and at higher 
throughput [2, 5, 10]. Higher throughput methods enable 
more cells to be measured, providing a more complete pic-
ture of cell heterogeneity or rare subpopulations. Higher 
throughput methods are also suitable for rapid diagnostic 
devices, such as the recently introduced IntelliSep sepsis 
diagnostic test, which relies on deformability cytometry. 
Although all these methods aim to measure the mechani-
cal properties, they vary widely in implementation, applied 
stress, time scales, and quantification of deformation [11]. 
These methods quantify cell deformation in a way that con-
siders a cell to be a uniform elastic object, without isolating 
nuclear contributions, or identifying local deformation.

As a major component of the cell, the nucleus has been 
found to alter overall deformability via chromatin reorgani-
zation [12, 13], nuclear envelope alteration [12–14], and 
cell cycle progression [2, 15, 16]. The nucleus’s mechanical 
properties have also taken a more active role in the cell’s 
function by facilitating cell migration [14, 17, 18] and 
genomic architecture reorganization [19, 20].

Massive nuclear reorganization also occurs in neutrophils 
when generating neutrophil extracellular traps (NETs) [21]. 
Neutrophils are a vital part of the innate immune system. In 
the defense against pathogens, neutrophils were long thought 
to attack invading organisms via phagocytosis or release of 
antimicrobials from their granules. However, a third role has 
recently been discovered, whereby neutrophils release NETs 
[22]. NETs are comprised of the neutrophil’s decondensed 
chromatin, embedded with cytosolic and granule proteins. 
These NETs are intended to trap and neutralize pathogens 
including bacteria, fungi, viruses, and parasites [21]. During 
the process of creating NETs, or NETosis, the neutrophil’s 
chromatin decondenses, the nuclear envelope breaks down, 
and the chromatin mixes with the cell’s antimicrobials before 
being released into the extracellular environment. This pro-
cess normally results in the death of the neutrophil, although 

there is a form of non-lytic NETosis where the NETs are 
released, and the chromatin-less cells remain intact. Despite 
the advantages of NETs in an immune response, NETs have 
been implicated in various autoimmune diseases including 
rheumatoid arthritis, psoriasis, and gout [23], as well as 
infertility and preeclampsia during pregnancy [24], and in 
the development of sepsis [25–27].

NETosis induces large structural changes in neutrophils 
within hours. This has been observed in vitro by induc-
ing NETosis with phorbol myristate acetate (PMA) and 
utilizing fluorescence microscopy to observe the chroma-
tin decondense and pervade the cell before rupturing [28]. 
NETosis has also been characterized using imaging flow 
cytometry, utilizing PMA or lipopolysaccharide (LPS) to 
induce NETosis [29]. In addition to staining and character-
izing the nuclear structure, this work also stained myelop-
eroxidase (MPO), a key biomarker of NETosis, which is 
normally compartmentalized in the neutrophil granules, but 
is co-located with DNA by the end of NETosis. Due to the 
massive structural reorganization needed to produce NETs, 
we believe that neutrophils undergoing NETosis should have 
significant changes in deformability, which should be meas-
urable with a high-throughput deformability cytometry tech-
nique. This has not been specifically measured or reported. 
The nuclear composition in neutrophil-like cells has previ-
ously been shown to impact the cells’ deformability, and 
ability to pass through small spaces [14], which indicates 
that chromatin decondensing or nuclear envelope breakdown 
in NETosis should have a significant impact on cell deforma-
bility. Identifying NETosing cells in flow may be valuable to 
potentially assess patients with abnormal immune activation, 
sepsis, or assessing the efficacy of autoimmune treatments.

However, high-throughput cell deformability methods 
have been unable to directly include nuclear information. 
Many of these nuclear findings have been extracted by 
experiments carefully designed to alter or isolate nuclear 
changes. A real-time fluorescence and deformability cytom-
etry technique has been recently developed, which is only 
able to provide fluorescence pulse information [16, 30]. This 
method has been able to identify nuclear envelope break-
down and distinguish between anaphase and metaphase cells 
with proper staining. Fluorescence images of nuclear struc-
ture have not been utilized in high throughout deformability 
methods due to the incompatibility of the time needed to 
integrate fluorescence images, and the speed at which cells 
are often flowing through the microchannels. With high res-
olution information of nuclear structure, we can understand 
how nuclear structure contributes to overall cell mechanical 
properties and use it to identify cell types.

To overcome these challenges, we have developed fluo-
rescence imaging deformability cytometry (FI-DC), which 
uses sensitive photomultiplier tubes (PMTs) to image 
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fluorescence channels while flowing at 0.5 m ·  s−1. This 
method utilizes fluorescence imaging using radiofrequency-
tagged emission (FIRE) [31], which generates images by 
integrating a line of pixels across the channel of a micro-
fluidic device. We combine this imaging with a shear flow 
deformability method [2] that features a tunable sheath 
flow geometry that allows us to increase cell deformation 
by altering stream viscosities. When used with appropriate 
nuclear or other intracellular stains, this platform allows us 
to directly combine intracellular imaging with cell defor-
mation. Using this system we observe that PMA-stimu-
lated neutrophils have a more round nuclear structure and 
increased deformability relative to unstimulated neutrophils.

Results

Fluorescence imaging deformability cytometry 
(FI‑DC) platform

We have developed FI-DC, a platform for deforming cells in 
flow, while delivering simultaneous brightfield and fluores-
cence images. FI-DC is the first deformability method of its 
kind that can operate at modest flow velocities (0.5 m ·  s−1) 
while delivering images that reveal both the shape and size 
of the cells, in addition to internal cellular structure. Here we 
demonstrate its capability by providing spatial information 
about nuclear structure, which had not yet been realized by 
high throughput deformability techniques. This is achieved 
by combining a shear flow deformability method [2] with 
fast fluorescence and brightfield imaging using FIRE [31] 
(Fig. 1a). We use a microfluidic device that has a center 
sample inlet, flanked by two additional inlets to provide 
sheath co-flows. A similar method has recently been used to 
probe cell and spheroid mechanics [32]. The streams join in 
a straight channel, with cross section 25 µm × 30 µm, where 
the cells are deformed into a bullet shape and imaged. 10 µm 
fluorescent beads are added to the cell sample to monitor 
flow speeds. The center sample stream contains cells sus-
pended in 1.5% w/v alginate in PBS, and the sheath flows 
are 5.0% w/v alginate in water. The viscosity in the sample 
stream serves to increase the average shear stress experi-
enced by the cells. Creating a viscosity mismatch between 
the sample and sheath flows pinches the velocity profile in 
the center of the channel (Fig. 1a inset), creating a higher 
velocity gradient, and higher shear stress.

FIRE provides rich, multimodal images of cells in flow. 
FIRE acts as a type of line scan imaging system, construct-
ing images as the cells flow past the interrogation region 
of the microfluidic channel. The interrogation region is 
exposed with a 488 nm laser and emitted and scattered light 
are reconstructed to create fluorescence, brightfield, and 

darkfield images. Here, we use brightfield and fluorescence 
channel [emission filter: 529 nm; width: 28 nm] images to 
measure deformed cells and their stained nuclear structure 
(Fig. 1b). Fluorescence images can reveal nucleus size, loca-
tion, or cell cycle, all of which might affect cell mechanical 
properties. FIRE images can be acquired by setting side scat-
ter or fluorescence thresholds, which provides initial filter-
ing of debris, and allows for long, continuous acquisition of 
sparse samples. With a sufficient cell concentration, FIRE 
can provide up to hundreds of cell events per second.

FIRE images are automatically analyzed to extract cell 
and nucleus morphology measures. Exported FIRE images 
are first filtered by a neural network to remove images with 
multiple cells, debris, dead cells, or partial cells. Remaining 
cells may be undergoing mitosis and exhibit a single con-
densed metaphase plane or two localized condensed chro-
matin regions associated with separated sister chromatids 
(Fig. 1b). Cells and nuclei are segmented from brightfield and 
green fluorescence images, respectively, using U-Net neural 
networks [33], which excel at segmenting biological images 
(Fig. 1c). To avoid the pixelation effects from measuring the 
segmented objects directly, we extract smoothed contours 
first. We can then calculate standard morphology measure-
ments such as cell area, perimeter, aspect ratio, and solidity.

Previous hydrodynamic deformability methods have 
measured cell deformability as deviations from circular-
ity. This has been achieved by measuring the cell aspect 
ratio [5], or by measuring the cell’s circularity [2]. Both 
measures reflect some information about changes in a 
cell’s shape, but we believe that there is some infor-
mation lost about the local changes in deformation. 
Therefore, we calculate local curvature of the extracted 
cell and nucleus boundaries and use this to calculate a 
unit-less scale-invariant bending energy to describe the 
entire object [34, 35]. In this paper we will refer to this 
measurement as the bending factor as it is not a physi-
cal measure of energy. The bending factor gives us local 
information about deformation of the cell and gives us a 
scale-invariant measure that describes how a cell deviates 
from circularity. According to this scale-invariant bend-
ing factor, a circle would have a value of 4π, which is the 
minimum possible value. The bending factor for sections 
along the boundaries can also be calculated, accumulat-
ing curvature measurements for any region. The bending 
factor is calculated for both cells and nuclei, and we use 
the cell membrane bending factor as our definition of cell 
deformability – defining the ability to change shape under 
fluid dynamic shear induced in the microfluidic device. 
The green fluorescence FIRE images give us information 
about the size and location of stained chromatin in the 
cells. We can leverage this information first by calculat-
ing the ratio of the chromatin area and cell area, which 
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we refer to as chromatin content. Cell area, cell deform-
ability, and chromatin comprise the most useful features 
in our analysis (Fig. 1d).

Deformation characterization

Deformation of cells in FI-DC is controlled by altering 
the viscosity of the sample and sheath streams, while 
maintaining constant volumetric f low rate. Here we 
demonstrate the change in deformation of suspension 
Jurkat cells by adjusting the sample stream viscosity, 
as well as the differential of the sample and sheath vis-
cosities (Fig. 2a). As an illustration, we show cells in 
the following sample:sheath configurations: PBS:PBS 
(indigo), PBS: 2.0% w/v alginate (violet), and 1.5% w/v 
alginate:5.0% w/v alginate (orange). As both the sam-
ple stream and sheath streams increase in viscosity, the 

shear stress on the cells increases, changing the cell shape 
from that of a circle, to a bullet. To estimate the stress 
experienced by the cells, we model the channel in 3D in 
COMSOL, and calculate the average shear stress in the 
fluid of a 10 µm × 10 µm lumen in the center of the chan-
nel. PBS:PBS has a calculated 0.03 kPa shear stress, PBS: 
2.0% w/v alginate has a calculated 0.53 kPa shear stress, 
and 1.5% w/v alginate:5.0% w/v alginate has a calcu-
lated 1.33 kPa shear stress. Using the most extreme flow 
condition shown here, this gives us ∼44-fold increase in 
estimated shear stress over a PBS filled channel. The dif-
ferences in cell shape seen by eye are also evident when 
comparing cell deformability (Fig. 2b). Using the bend-
ing factor as the measurement for cell deformability, the 
1.5% w/v alginate:5.0% w/v alginate condition gives us 
a clear separation from the largely undeformed cells in 
PBS:PBS, leading us to use this condition for the rest of 
the following work.

Fig. 1  FI-DC schematic and analysis overview. a Cells flow through a microfluidic device with viscous sheath flows that create a pinched veloc-
ity profile (inset). After deforming, cells are interrogated in the straight channel via FIRE, producing brightfield and fluorescence images. b Jur-
kat and neutrophil images demonstrating varied deformed shapes and nuclear structure. c Cells and nuclei are segmented from images using 
U-Net neural networks. Curvature is measured from extracted boundaries, which is integrated to yield a scale-invariant bending factor, which 
we use for cell deformability. Chromatin content is calculated as the ratio of nuclear and cell area. d Cell area, cell deformability, and chromatin 
content capture fundamental features of Jurkat cell populations (n = 10,031). Unlabeled scale bars are 10 μm
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Revealed nuclear structure heterogeneity

FIRE’s fluorescence images allow us to discover nuclear 
heterogeneity in Jurkat cells. Without these fluorescence 
intracellular images, we may only analyze cells by area and 
deformability. But by measuring the chromatin area per 
cell, we can see a subpopulation in Jurkat cells that exhibits 
reduced chromatin area for similarly sized cells (Fig. 2c). 
This reduced chromatin content subpopulation is rare (1.9%) 
and has a larger cell size and increased cell deformability 
than the rest of the Jurkat sample. However, when normal-
izing for size differences by comparing cells in a narrow size 
range (blue box with 5 µm2 width in Fig. 2d), we do not see 
a significant difference in deformability of the low chromatin 
content cells (Fig. 2e).

Investigating differences in cell deformability

FI-DC’s images also enable us to eliminate or isolate fac-
tors that contribute to similarly sized cells deforming dif-
ferently. When comparing the mechanical properties of 
cells, it is useful to understand how cells of a similar size 
may deform differently. This may be true when compar-
ing different cell types or treatments, or even the natural 
spread within the same population. We select a sampling 
of approximately 100 cells at low and high deformability 
for the same cell area range (57.8 µm2—62.8 µm2), while 
excluding outlier cells with high deformability (Fig. 2f). 
These cell groups do not have noticeably different lev-
els of chromatin content, indicating that the difference in 
deformation may not be due to nuclear structure (Fig. 2g). 
Utilizing the shared polar coordinate system of the cell 

Fig. 2  FI-DC features tunable deformation and reveals nuclear and membrane details. a Increasing the sample stream viscosity and the ratio of 
sample:sheath viscosity increases visible deformation. b Bending factor as a form of cell deformability captures the change in shape visible in 
images (n ≥ 11,700 for all groups). c Nuclear images of Jurkat cells reveal a subpopulation with reduced chromatin content (n = 9,730). d This 
reduced chromatin content subpopulation features a higher cell size and deformability than the rest of the cell population. e When comparing 
cells of similar size (blue box with 5 µm2 width in Fig. 2d), there is not a noticeable difference in cell deformability (n = 1,783). f  Jurkats of 
similar size with low (yellow) and high (blue) cell deformability are selected for comparison (n = 10,031). g These cells do not exhibit noticeably 
different levels of chromatin content (blue n = 96; yellow n = 99). h Median shapes of cells in these populations reveal the high cell deformability 
cells are deformed more in the lower (back) corners of the cell. i Differences in the deformation of sections of the cell quantitatively demonstrate 
the sections of the cell responsible for overall cell deformability differences. Unlabeled scale bars are 10 µm
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boundaries, we calculate median cell shapes for each of 
the groups (Fig. 2h). These median cell shapes indicate 
that the group of higher deforming cells have more pro-
nounced corners at the base of the bullet shape, as well 
as some negative curvature in between the corners. This 
observation is demonstrated quantitatively by dividing 
the cells into thirds (gray lines) and calculating the bend-
ing factor for each section (Fig. 2i). This analysis illus-
trates that there is some increased deformation at the front 
of the cell (Sect. 0), but that the back thirds (Sect. 1 & 
Sect. 2) have a much higher bending factor. This, along 
with the chromatin content suggests that the difference 
in deformation may be due to differences in the mem-
brane rigidity or cytoskeleton associated with the outer 
cell membrane, rather than due to nuclear effects. Similar 
spread in deformability may be visible with other imag-
ing methods or deformability calculations, but FI-DC can 
give more insight into the local changes that may contrib-
ute to deformation differences.

Neutrophil extracellular traps

We use FI-DC to study changes associated with NETosis 
in neutrophils. We induce NETosis in neutrophils from 
two healthy human donors by stimulating in vitro with 
2 nM PMA for 1.5h and comparing to a dimethyl sulfoxide 
(DMSO) vehicle control. We chose 1.5h because at longer 
time points (3h or greater) we observed that cells remained 
sticky and attached to the culture vessel, likely because of 
the extruded chromatin accompanying NETosis of these 
cells. The loss of membrane integrity, associated optical 
contrast, and aggregates that formed at this later time point 
prevented us from obtaining useful measurements of cells. 
In both donors, we observe a decrease in chromatin content, 
with an increase in cell deformability (Fig. 3a). Cell and 
nuclear traces from five cells from the center of the cell dis-
tributions illustrate the changes in the cells. The cells appear 
to have grown, and become more bullet shaped, indicating 
that with PMA treatment, the chromatin area has remained 
the same, and the measured chromatin content has changed 
only due to the cell size change. The nuclear bending factor 
of the PMA-treated neutrophils shows a trend towards lower 
values, which is loosely correlated with chromatin content 
(Fig. 3b). We do not use the nuclear bending factor as a 
measure of nuclear deformation, but instead to describe its 
shape. In this case, the lower nuclear bending factor indi-
cates the nuclei have become less lobular and are becoming 
rounder. Finally, while both cell deformability and nuclear 
bending factor have changed with PMA stimulation, the two 
measures do not appear to be correlated (Fig. 3c).

Stimulation of neutrophils with PMA results in marked 
increases in cell area and cell deformability (Fig. 4a) in both 
blood donors. The PMA-treated distributions have a clear 

shift in their region of highest density, but it is clear via the 
density contours that there remains a portion of the distribu-
tions co-located with the untreated neutrophils, indicating that 
not all neutrophils are stimulated equally. To compare how 
the mechanical properties of similarly sized cells compare, 
we have previously developed a measure of relative deform-
ability [11]. Relative deformability normalizes the median 
deformability of treated cells within a narrow size range by 
the median deformability of control cells. This normalization 
allows us to compare values more confidently between experi-
ments, and across platforms. Selecting a narrow size range, 
we can see that there is a clear shift in cell deformability of 
the PMA-treated neutrophils, and that all distributions are 
strongly skewed (Fig. 4b). Rather than converting thousands 
of cell measurements into a single value of relative deform-
ability, or risk taking the median of a complex distribution, we 
construct relative deformability distributions instead.

Relative deformability distributions normalize entire 
deformability distributions, not just measures of central ten-
dencies. We calculate relative deformability distributions by 
a bootstrapping method where we randomly sample pairs of 
values from each treatment group and corresponding control 
group and divide them. Sampling is limited by the group 
with fewer observations (Fig. 4c). In this way, we also get 
a more complete understanding of the control distribution, 
which is normalized against itself, instead of simply having a 
relative deformability of 1. Sampling in this way, we can still 
observe a shift in the PMA-treated neutrophils. Addition-
ally, because of the resampling, the relative deformability 
distributions are roughly t-distributed, making them easier 
to model and compare. These distributions are compared 
and modeled with Bayesian inference (See Supp Fig. S1 
for model structure) and 94% Credible Intervals (94%CI) 
of the posteriors are reported [36]. The treatment means 
are significantly greater than the control means (calculated 
as the difference) for both Donor 1 (median = 0.064, 94% 
CI [0.057, 0.072]) and Donor 2 (median = 0.043, 94% CI 
[0.034, 0.053]). The treatment scale parameters σ are signifi-
cantly greater than the control scale parameters (calculated 
as the difference) for both Donor 1 (median = 0.012, 94% 
CI [0.0058, 0.018]) and Donor 2 (median = 0.0084, 94% 
CI [0.00065, 0.016]). The normality parameter ν is shared 
across models (median = 3.61, 94% CI [3.45, 3.78]) and 
indicates the distributions are more likely to be t-distributed 
rather than normally distributed. We believe this calculation 
of a relative deformability distribution is a more accurate 
and richer metric for changes in deformability.

NETosing neutrophil classification

With this platform we not only want to measure NETos-
ing neutrophils and their distributions but detect them in 
flow as well. We perform random forest classification on 
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the treated and untreated neutrophils by pooling the meas-
ured cells from both donors. These cells are split into train-
ing (n = 67,530) and test (n = 22,510) sets. The classifier is 
trained using features calculated from the brightfield and 
fluorescence images, and achieves 85% classification accu-
racy, with untreated and treated precision values of 84% and 
86% respectively and recall values of 88% and 82% respec-
tively. We note that this performance takes into account that 
it is likely that not all cells in the PMA-treated group are 
undergoing NETosis at the same stage. We perform permu-
tation importance tests that reveal the cell area is by far the 
most useful feature to classify treated neutrophils, followed 
by cell deformability (See Supp Fig. S2a for list of features 
and relative importance). Due to the noticeable change in 
cell size following PMA stimulation, we construct a new 
classifier, excluding features relating to cell size including 
cell area, cell length, cell width, cell perimeter, and chroma-
tin content. This classifier has decreased performance, but 
not by much, as it has a classification accuracy of 79.7%. 
This classifier has untreated and treated precision values of 
80% and 79% respectively and recall values of 82% and 77% 

respectively. Permutation tests reveal that this classifier’s 
most useful features are overall cell deformability, followed 
by the bending factor of the two back corners of the cell, 
and then the bending factor of the front of the cell (See Supp 
Fig. S2b for list of features and relative importance). These 
results are consistent with the higher deformability Jurkat 
cells which experienced more deformation in the back cor-
ners (Fig. 2h). These classification results indicate that frac-
tions of the treated population that may comprise NETosing 
neutrophils can be identified in FI-DC, not only due to their 
increase in size, but due to their deformation as well.

Discussion

Here we have presented FI-DC, a platform that enables 
fluorescence imaging combined with high throughput cell 
deformability in flow. This technology enables morpho-
logical cell measurements to be combined with intracellu-
lar information, such as nuclear structure. Additionally, we 
have proposed a new method to quantify the deformation 

Fig. 3  FI-DC reveals changes in NETosing neutrophil deformation and structure. a Stimulated neutrophils from two donors have increased cell 
deformability and reduced chromatin content. Traces from 5 cells from each condition reveal cells have increased in size (n ≥ 21,700 for all 
groups). b The nuclear bending factor of stimulated neutrophils is slightly lower, as the cells begin the NETosis process. c There is no visible 
correlation between cell deformability and the shape of nuclear structure (nuclear bending factor)
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of hydrodynamically deformed cells, by calculating local 
curvature along the cell perimeter, which can be integrated 
into a summary bending factor. These measurements allow 
us finer insight into how cells may deform locally. Using this 
platform, we have been able to identify Jurkat subpopula-
tions by nuclear structure and characterize the change in 
mechanical properties of NETosing neutrophils. Finally, we 
developed a new measure to compare changes in deformabil-
ity by generating relative deformability distributions.

Deformability methods can be characterized by how they 
deform cells, and how that deformation is measured. Except 
for AFM-based methods [7], many deformability cytometry 
platforms measure the entire deformation of the cell. This is 
even though the cell is comprised of multiple components 
including the actin cortex and nucleus, and all regions of a 
cell may not experience the same stresses and strains. To that 
end, we have calculated the curvature of the cell perimeter, 
which gives us local information about the shape of the cell 
membrane. This type of analysis can help explain the dif-
ference in the shape of cells with different deformability. By 
itself, understanding the magnitude and sign of curvature 

is valuable. But the curvature can be summarized via the 
scale-invariant bending factor, which quantifies how the cell 
deviates from a perfectly undeformed circle. Additionally, 
the bending factor can be calculated for sections along the 
cell perimeter, giving a standardized, midlevel quantifica-
tion between overall bending factor and curvature. These 
measurement techniques can be applied to any image-based 
deformability platform, although it requires sufficiently 
smooth and accurate cell boundaries.

Using this platform, we investigated the natural varia-
tion in mechanical properties of Jurkat cells. FI-DC allowed 
us to identify cells with varying chromatin content, which 
would have been missed with non-fluorescence imaging. 
The identified cells with reduced chromatin content had 
increased cell size and cell deformability, although we 
were unable to determine if the increase in deformability 
was independent of the size change. Given the larger cell 
size these images may represent cells in later stages of the 
cell cycle in which chromatin condenses, such as during 
the formation of the metaphase plate. Using the capabil-
ity to measure chromatin content and local cell membrane 

Fig. 4  NETosing neutrophils have increased cell deformability. a  NETosing neutrophils demonstrate a noticeable increase in cell size and 
deformability (n ≥ 21,700 for all groups). b The cell deformability of neutrophils from a narrow size range is compared, which illustrates a small 
shift in deformability over this small size range (n ≥ 4,600 for all groups). c Distributions of cell deformability are normalized, which also show 
an increase in treated neutrophils. Bayesian analysis indicates that there is a significant change in the distributions’ means when modeled as 
t-distributions
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deformation, we were able to determine that cells of similar 
size with different levels of deformation do not differ in 
their chromatin content, but in how the cytoskeletal cortex 
is likely deforming.

We further demonstrated the capabilities of the FI-DC by 
measuring neutrophils in early stages of undergoing NETo-
sis. In NETosis, the neutrophil’s chromatin decondenses and 
is released extracellularly. We expected that at early stages 
during this process that we would be able to witness the 
visible spread of chromatin in the cell, as well as a change 
in mechanical properties. While we observed an increase 
in deformability over control cells, we did not witness the 
change in nuclear structure, likely because the timescale for 
nuclear membrane dissolution to chromatin ejection is rapid 
and difficult to capture in the early snapshot we interrogate. 
When we looked at longer times after PMA dosing (> 3h) 
we observed gross changes in neutrophil structure, which 
became very sticky to the culture vessels and were not usable 
for the suspended FI-DC measurements. Other inducers of 
NETosis, such as calcium ionophores, could be used in the 
future to induce NETosis to better link mechanical proper-
ties to various stages of this process.

In addition to measuring the change in mechanical 
properties in flow, we would like to be able to identify and 
eventually sort cells based on these properties, which may 
provide further utility in studying NETosing neutrophils. 
Using features calculated from the brightfield and FITC 
images, we developed a random forest classifier that was 
able to classify untreated and treated neutrophils with 85% 
accuracy. This classifier identified the large change in cell 
area of PMA-treated neutrophils as the most useful feature 
in classification. When excluding cell size-related features, 
we were still able to achieve a classification accuracy of 
almost 80%, with cell deformability and the bending factor 
of the back region of the cell being most important. More 
accurate classification may be possible with a neural net-
work, but in our experiments, the cell populations were run 
through FI-DC separately, which could induce some batch 
effects in images. Finally, we aimed to classify cells that 
came from treated and untreated samples. But that does not 
address whether cells were NETosing. A more useful classi-
fier would predict which cells are actively NETosing. NETo-
sis status could perhaps be indicated by nuclear changes or 
staining for MPO [29]. In our case, we were unable to find 
a suitable fluorescent biomarker probe that did not require 
fixing or permeabilizing the neutrophils.

In the future, we would like to more completely character-
ize the NETosing landscape. This would entail measuring 
neutrophils that have been stimulated for different durations, 
with different PMA doses. We believe that with the dose 
and duration used here, the neutrophils have only just begun 
to undergo internal changes, and have not yet decondensed 
their chromatin, or broken down the nuclear envelope. One 

challenge we face in this regard is handling and preserving 
cells undergoing NETosis. This process makes them espe-
cially sticky and fragile, and we cannot fix the cells as some 
other imaging studies have done.

We also discuss the capabilities of our platform for future 
use. We have demonstrated the effect that fluid viscosity has 
on our ability to deform cells.

This type of shear flow deformability cytometry may be 
capable of deforming the nucleus, although that was not 
shown here [11]. It may be possible to achieve these higher 
levels of deformation by further increasing the viscosity of 
solutions, or by increasing the duration of time that the cells 
are being deformed. Furthermore, we can demonstrate our 
ability to differentiate cells in different stages of the cell 
cycle using the nuclear fluorescence images of FIDC. Cells 
in different cell stages have been shown to deform differ-
ently [2], but this required chemically synchronizing cells. 
With FI-DC, intricately designed experiments to ensure 
synchronized cells would become less necessary. Beyond 
imaging and characterizing nuclear structure, FI-DC may 
be leveraged to stain for other biomarkers or intracellular 
components, which will create a more complete understand-
ing of cell identity and its resulting mechanical properties.

Materials and methods

Alginate solution preparation

Alginate solutions were prepared by dissolving sodium algi-
nate in deionized water (sheath) or sterile PBS (sample). 
The solutions were stirred overnight at room temperature on 
a stir plate until visibly dissolved. Sample stream alginate 
solutions were prepared at 2 × concentration in order to reach 
proper concentration when added to cell solution.

Cells and treatment

The Jurkat cell line was cultured in ATCC-modified RPMI 
1640 medium (Gibco) with 1% penicillin/streptomycin 
(Gibco), 1% 1 M HEPES buffer and 10% heat-inactivated 
FBS (Gibco). Cells were grown at 37 °C, with 5%  CO2, at 
densities between  105 and  106 cells ·  mL−1 with subculturing 
every second day.

Neutrophil isolation

Neutrophils were isolated as previously described [37], and 
cultured in ATCC-modified RPMI 1640 medium (Gibco) 
with 1% penicillin/streptomycin (Gibco), 1% 1 M HEPES 
buffer and 2% heat-inactivated FBS (Gibco). Cells were 
cultured at 37 °C, with 5%  CO2 in non-tissue treated well 
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plates on an orbital shaker at densities between 5 ×  105 and 
 106 cells ·  mL−1.

Neutrophil stimulation

Neutrophils were stimulated at 2 nM PMA using 2 M PMA 
solution prepared in DMSO at 1:1,000 dilution. Unstimu-
lated cells receive equivalent vehicle control of DMSO at 
1:1,000 dilution. After stimulation and incubation on an 
orbital shaker in the incubator, neutrophils were collected 
following vigorous pipetting, followed by a PBS wash step. 
Cells were spun at 400 g for 5min and resuspended in 325 
µL 1% BSA PBS solution. Cells were stained with 1 µL 
Syto16 nuclear stain and incubated on the orbital shaker in 
the incubator for 10 min. The solution was spiked with 3 µL 
of 10 µm fluorescent beads and 325 µL alginate solution was 
added to achieve a final alginate concentration. The solution 
was gravity filtered with a pre-wet 20 µm cell strainer before 
being loaded into a 1 mL syringe.

Device design and operation

Soft lithography was used to fabricate polydimethylsilox-
ane (PDMS) devices which were bonded to glass slides. 
The device has one sample inlet and two sheath flow inlets 
that meet and flow together through a straight channel. The 
straight channel has a width of 25 µm and height of 30 µm. 
The sample stream was injected via syringe pump at 10 
µL ·  min−1, and each of the sheath flow were injected at 
5 µL ·  min−1. Cells were imaged via FIRE in the middle 
of the straight channel section. The FIRE equipment was 
operated with a 488 nm laser operating at 80 mW with a 
FITC (529/28 nm) bandpass filter. The transmitted light was 
measured using a photodiode to generate brightfield images 
while side scattered light was collected with a PMT to gen-
erate darkfield images. Image capture was triggered by a 
sufficiently low fluorescence signal threshold to capture any 
object with fluorescence in the FITC channel. All generated 
images have a pixel pitch of 0.25 µm per pixel. Devices were 
cleaned after each use by running 800 µL dilute bleach fol-
lowed by 800 µL PBS through the tubing and device between 
each sample. Images are analyzed by custom Python scripts.

Cell image classification with neural network

A neural network was trained to distinguish clean images of 
single cells from debris, dead cells, doublets, etc. A VGG16 
architecture pretrained on ImageNet [38] was finetuned on 
48,000 FIRE images using Keras and TensorFlow2. Results 
were human verified and corrected to ensure only single, live 
cell images were analyzed.

Cell segmentation with U‑Net

Segmentation of cells and nuclear structure, from brightfield 
and FITC images, respectively was performed by a U-Net 
neural network [33]. The brightfield and FITC image neural 
networks were trained on 560 and 275 FIRE cell images, 
respectively. We filled in holes and performed small mor-
phological opening and closing on cell binary images.

Contour extraction and smoothing

Boundaries of cells and nuclei were extracted from binary 
masks. Boundaries were smoothed to remove pixelation 
effects by first downsampling so that all vertices are 1.5 
pixels widths apart, followed by local regression. Stand-
ard shape measurements are extracted from the boundaries 
including cell area, width, length, and perimeter.

Calculation of bending factor

For easy comparison, all cell and nucleus boundaries were 
converted to polar coordinates and interpolated to 120 points 
(3° apart). Curvature along the arc length parametrized 
boundaries (κ(s)) was calculated at each point according to 
[34]:

The scale-invariant bending factor (known as scale-invar-
iant bending energy in other fields) was calculated from the 
curvature along the boundaries and allowed for comparison 
of similar shapes of different size, where P is the perimeter 
along the boundary [35]:

Finally, the bending factor of a portion of the boundary 
from a to b can be calculated as well:

Bayesian inference

Bayesian inference is conducted with PyMC [39] and No 
U-Turn Markov chain Monte Carlo (MCMC) Sampler [40] 
to model relative deformability distributions as a t-distri-
bution (See Supp Fig. S1 for model structure). Posterior 
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distributions of the mean and scale parameters are compared 
within Donors, to assess the changes due to PMA treatment.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s44258- 023- 00008-w.
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