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Abstract
This review examines the significant role of Atomic Force Microscopy (AFM) in neurobiological research and its emerging 
clinical applications in diagnosing neurological disorders and central nervous system (CNS) tumours. AFM, known for its 
nanometre-scale resolution and piconewton-scale force sensitivity, offers ground breaking insights into the biomechanical 
properties of brain cells and tissues and their interactions within their microenvironment. This review delves into the appli-
cation of AFM in non-clinical settings, where it characterizes molecular, cellular, and tissue-level aspects of neurological 
disorders in experimental models. This includes studying ion channel distribution, neuron excitability in genetic disorders, 
and axonal resistance to mechanical injury. In the clinical context, this article emphasizes AFM’s potential in early detection 
and monitoring of neurodegenerative diseases, such as Alzheimer's Disease (AD), Parkinson's Disease (PD) and amyotrophic 
lateral sclerosis (ALS), through biomarker characterization in biofluids such as cerebrospinal fluid and blood. It also exam-
ines the use of AFM in enhancing the grading and treatment of CNS tumours by assessing their stiffness, providing a more 
detailed analysis than traditional histopathological methods. Despite its promise, this review acknowledges challenges in 
integrating AFM into clinical practice, such as sample heterogeneity and data analysis complexity, and discusses emerging 
solutions such as machine learning and neural networks to overcome these hurdles. These advancements, combined with 
commercial nanotechnology platforms, herald a new era in personalized treatment strategies for management, treatment and 
diagnosis of neurological disorders.
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Graphical Abstract

Highlights
• Focus on AFM's unique capabilities in neurobiology for detailed biomechanical analysis of brain tissues and cells.
• Explore AFM's clinical potential in diagnosing neurodegenerative diseases and improving current CNS tumour grading 
system.
• Address challenges in clinical integration of AFM and discusses potential solutions.

Keywords Atomic force microscopy · Neurological disorders · Neurodegenerative diseases · CNS tumours

Introduction

The human brain is a complex network and circuitry com-
prising neurons, glial cells and the extracellular matrix 
(ECM), which orchestrated the highly specific patterns of 
spatial and temporal neuronal activity. Most of these activi-
ties are significantly influenced by the mechanics of brain 
tissues, resulted from the intricate interactions between brain 
cells and their microenvironment [1, 2]. Increasing evidence 
suggests that dysregulation in these interactions can lead 
to neurological disorders, and the underlying mechanism 

may hold key to the characterization, evaluation and even 
diagnosis of the disorders [3–5]. As such, advanced tech-
niques like magnetic resonance elastography (MRE) [6], 
ultrasound elastography [7], and AFM are utilised to exam-
ine the biomechanical properties of the brain cells and their 
surroundings. Among these, AFM stands out due to its 
unique capabilities, offering nanometre-scale image reso-
lution, piconewton-scale force sensitivity, and the ability 
to perform simultaneous imaging on most tissues and bod-
ily fluids, including brain tissues and cerebrospinal fluid 
(CSF), both crucial to the study of neurobiology of diseases. 
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These advanced techniques enhance our understanding of 
how tissue mechanics impact brain function and disease 
progression.

In this review, our aim is to showcase the notable appli-
cations of AFM in characterizing experimental models of 
neurological disorders and to discuss recent advancements 
in its clinical application for evaluating such disorders. We 
will provide an overview of the characterization modalities 
of AFM, and review experimental examples of such applica-
tion at the molecular, cellular and tissue levels. Additionally, 
we will highlight the recent progress in the clinical applica-
tions of AFM, particularly in the field of neurodegenera-
tive diseases (NDD) and CNS tumours. We will address the 
challenges that currently hinder the widespread adoption of 
AFM in clinical settings and discuss emerging technologies 
and solutions that are poised to overcome these challenges, 
thereby facilitating its translation into clinical practice.

AFM characterization techniques

The AFM is a multifunctional tool capable of imaging the 
topography of biological systems at nanometre resolution 
under physiological conditions. It offers superior spatial 
resolution and fast imaging time in comparison with other 
common neuroimaging technologies, including multi-photon 
microscopy, electron microscopy, ultrasound, CT (Computed 
Tomography), fMRI (Functional Magnetic Resonance Imag-
ing), MRI (Magnetic Resonance Imaging), SPECT (single 
photon emission computed tomography) and PET (Positron 
Emission Tomography) (Table 1) [8–11]. Additionally, it can 
be used for quantifying biophysical properties and molecular 
interactions. A wide range of forces (pN to nN) and stiffness 
(Pa to GPa) could also be measured [12].

AFM operation

AFM typically uses a sharp tip at the free end of a soft can-
tilever, which is several micrometres long (Fig. 1A). Various 
probes, ranging from nanometre-sized sharp tips to microme-
tre-sized beads, are utilized for mechanical characterization 
of biological samples. Larger probes average measurements 
over a larger sample area. While sharp probes are preferred 
for tracing the sample topography and for measuring forces 
between the probe and sample with high sensitivity (pN 
resolution). As the AFM probe scans the sample surface, 
it causes the tip to deflect due to interaction forces. A laser 
beam aligned to the back of the cantilever reflects onto a 
photodiode, which tracks the movement of the cantilever and 
provides positional data in both normal and lateral directions. 
The cantilever deflection is converted into force by multiply-
ing it by the spring constant of the cantilever. Piezoelectric 
elements are employed to facilitate precise movements of 

either the sample or the cantilever. By combining cantilever 
deflection with XYZ positions, both qualitative data such as 
morphology and quantitative data including stiffness, hyster-
esis, adhesion forces can be obtained [12, 13].

Morphology

AFM produces topographs with an exceptionally high signal-
to-noise ratio, allowing direct observation of protein aggre-
gates and fibrils at sub-nanometre resolutions [14–16]. This 
technique does not necessitate special sample preparations 
such as surface coating, labelling or dehydration, and it can be 
used under various conditions (air, and liquid) [17].

AFM operates primarily in two modes: contact and tap-
ping modes [18, 19]. Contact mode uses a feedback sys-
tem to keep the deflection constant, maintaining a constant 
interaction force between the cantilever tip and the sample. 
While this mode is quick and sensitive, it can potentially 
damage soft samples due to the rigid probe making direct 
contact with the surface. Tapping mode involves the can-
tilever oscillating near its resonant frequency, controlled 
by a piezoelectric actuator. A feedback signal maintains a 
constant amplitude of cantilever vibration during scanning. 
This mode is preferred in imaging for its ability to achieve 
high resolution while minimizing damage to the sample. The 
phase delay between the drive signal and the tip's actual 
vibration is also measured and used to assess the sample's 
physical properties.

Besides the usual imaging speeds of few Hz used for 
imaging static samples, the AFM scanning speed can be 
increased to observe the dynamic response in biological sys-
tems. High-speed AFM (HS-AFM) enables the monitoring 
of cellular dynamics [11] and the conformational dynamics 
of single proteins on substrates with sub-seconds tempo-
ral resolution. Soft cantilevers (100 – 200 pN/nm) are used 
for tapping mode imaging to avoid damaging the delicate 

Table 1  Comparison of various neuroimaging technology [8–11]

Ultrasound, CT, MRI, SPECT and PET are commonly used in clini-
cal settings while the others are primarily used in cellular or tissue 
studies

Imaging Technique Spatial Resolution Imaging Time

Multi-photon Microscopy 15 - 1000 nm sec
Atomic Force Microscopy 10 - 20 nm sec to min
Electron Microscopy ~5 nm sec
Ultrasound 50 µm sec
CT 12 - 50 µm min
MRI 10 - 100 µm min to h
fMRI ~1 mm sec to min
SPECT 1 - 12 mm min
PET 1 - 3 mm min
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biological samples. However, using HS-AFM to image the 
nanostructures of live mammalian cells with length scale 
of orders of magnitude larger than that of proteins remains 
complicated [11, 13].

Elastic properties

In the force spectroscopy mode, the AFM probe functions 
as a force sensor to measure the biophysical properties of 
samples. Stiffness, which denotes resistance to deforma-
tions induced by mechanical forces, can be obtained using 
this mode. The AFM probe indents a compliant sample, 
such as a cell [20] or tissue [21–23]. The applied force and 
distance travelled by the probe are recorded in a FD curve 
(Fig. 1B, C). These FD curves measure the mechanical 
deformation and response of the sample under load. The 
approach curve (Fig. 1B) is typically fitted to a Hertz’s 
contact mechanics model, incorporating Sneddon’s modi-
fication to the indenter shape (for cell/ tissue mechanics). 
Based on this model, only elastic contributions (Young’s 

modulus) to the sample mechanics are obtained. Besides 
the Hertz’s model, Ogden hyper-elastic material model has 
also been used for deriving the Young’s modulus of brain 
tissues [23, 24]. To conduct accurate elasticity measure-
ments, indentations are generally limited to less than 10% 
of the sample thickness and regions thinner than 300 nm 
are avoided as they are likely affected by the underlying 
substrate [20]. In order to address the heterogeneity of bio-
logical systems, an elasticity map consisting of one indent 
per pixel is usually taken at a region of interest on the 
sample with the values averaged. Topographs of the region 
are also generated simultaneously.

The elasticity of mammalian cells, often expressed in 
terms of the Young’s modulus E, is influenced by factors 
such as cell shape, membrane tension, and cellular compart-
ments. These properties are dynamic and can change during 
the cell cycle, in response to mechanical stimuli, or due to 
biochemical signalling [25]. These mechanical properties 
can undergo significant changes during cell development 
and in various disease states.

Fig. 1  a AFM operation principles. AFM utilizes a sharp tip at the free end of a soft cantilever to scan across a sample surface. Height measure-
ments at discrete points create a reconstruction of the sample’s topography. b, c Various AFM-based techniques used for characterizing biologi-
cal samples. Schematics of the force–distance (FD) curves are shown. b The probe indents the sample until it reaches a defined maximum force 
(blue approach curve) before retracting (black retraction curve) back to its rest position. Stiffness values can be obtained by fitting the slope of 
the approach curve (a steeper slope corresponds to higher stiffness). The hysteresis or sample viscosity can be estimated from the area between 
the approach and retraction curves. c The adhesion force (red dot) can be extracted from the retraction curve. Single receptor–ligand interactions 
can be measured when the AFM tip is functionalized with bioligands
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Viscoelastic properties

In complex biological systems (living cells or tissues), they 
often exhibit time-dependent behaviours (viscoelastic), 
which manifest as hysteresis between the approach and 
retraction FD curves (Fig. 1B) [26]. Energy dissipation is 
the amount of mechanical energy lost as heat during each 
indentation cycle by the AFM tip, and corresponds to the 
area enclosed by the approach and retraction curves (areas 
within the hysteresis loop) [27–29]. This loss of energy is 
primarily attributed to frictional and viscous damping within 
the cell or tissue. A larger hysteresis area corresponds to a 
higher viscoelastic contribution.

Additional techniques for measuring the viscoelastic 
properties include time domain (static) experiments and 
frequency domain (dynamic) experiments [23, 30]. In time 
domain experiments, a hold phase is introduced after the 
AFM tip approaches the sample and before tip retraction. 
During this hold phase, either the force or deformation 
is kept constant, while the time-dependent behaviour of 
the other parameter is measured. Under constant applied 
force, the deformation is recorded during creep relaxation. 
Alternatively, stress relaxation can be measured when the 
deformation is kept constant, while the continuous decay 
in the interaction force is recorded. In frequency domain 
experiments, the AFM cantilever oscillates relative to the 
sample with a small fixed amplitude at a range of fre-
quencies during indentation. The frequency-dependent 
Young’s modulus can be obtained in the context of linear 
viscoelasticity.

Molecular interaction

AFM is a highly versatile platform for investigating cel-
lular interactions. In addition to probing whole cells, sin-
gle molecule-based force spectroscopy can be utilized 
[19, 25] to detect the binding strength of ligand-receptor 
pairs. This technique involves tethering a receptor or 
ligand to the AFM tip and the cognate ligand or recep-
tor to a substrate. As the tip approaches the substrate, a 
ligand-receptor bond forms (specific molecular interac-
tions), and subsequent retraction of the tip leads to bond 
rupture (Fig. 1C). The receptor-ligand bond strength can 
be inferred from the rupture forces recorded in the force-
distance curve. Specific molecular forces typically range 
from a few piconewtons and localized receptors on cells 
can also be simultaneously detected with a lateral reso-
lution of ~ 50 - 100 nm based on the size of the probed 
molecules and cellular topography [25]. These broad func-
tionalities of AFM underscore its efficacy and applicability 
in neurobiological research.

AFM characterization of neurological 
disorders using experimental models

AFM has been used extensively in the study of neurological 
disorders in experimental models. Selected studies on the 
biophysical properties characterization at molecular (map-
ping proteins on neuronal cell membranes) [31–33], cellular 
(neuronal cells biomechanics) [20, 23] and tissue (brain tis-
sue mechanics) [21, 22, 34] levels are summarized below.

The spatial distribution of ion channels plays a crucial 
role in neuronal excitability. Maciaszek et al. [31] utilized 
AFM to detect binding events occurring between specific 
small conductance calcium activated potassium (SK) chan-
nels on the neuron cell surface (cultured hippocampal 
pyramidal neurons) and apamin molecules (naturally derived 
bee venom toxins attached to the AFM tip). The SK channels 
were shown to be highly concentrated on neuronal dendrites 
membranes, either individually or in pairs. This approach 
addresses challenges associated with visualizing ion chan-
nels at the single-channel level using fluorescent dyes.

Angelman syndrome (AS) is a neurodevelopmental disor-
der marked by intellectual disability, developmental delays 
and seizures. There is an accumulation of AS relevant sub-
strate proteins caused by a loss-of-function mutation in the 
ubiquitin protein ligase E3A (UBE3A) gene. Sun and Yuan 
et al. [32] investigated the functional properties of 2D human 
neurons and 3D cortical organoids derived from UBE3A 
knockout (KO) human embryonic stem cells (hESCs). The 
loss of UBE3A in human neurons was linked to altered neu-
ronal excitability evidenced by enhanced fast components of 
after-hyperpolarization (fAHPs) which are regulated by cal-
cium- and voltage-dependent big potassium (BK) channels. 
BK currents were found to be larger in UBE3A KO neurons 
compared to wild-type neurons due to increased expression 
of BK proteins, as confirmed by Western blot analysis. AFM 
was used to quantify the density of BK proteins on neuron 
membranes by analysing the interactions between BK proteins 
on the soma membranes and BK-channel specific antibodies 
(APC151, Alomone) attached to a functionalized AFM tip 
(Fig. 2A and B). Results showed a higher density of BK chan-
nels in the membranes of KO cells (Figs. 2E and F). Combin-
ing these findings with patch-clamp results, BK channels were 
established to be substrates for UBE3A. As such, targeting BK 
channels may be viable therapeutic strategy for treating AS.

In a recent study by Lim et al. [33], dendron modified 
AFM probes were used to provide spacing between tethered 
molecules, thereby improving the probabilities of single-
molecule binding. LIM kinase 1 (LIMK1), a protein involved 
in the growth of neurons (dendritic spines) was used as a 
model target protein. By using AFM probes tethered with 
LIMK1 antibodies, the study analysed LIMK1's distribution 
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within hippocampal neuronal cells, specifically in the soma 
and dendritic spine areas. In both immature and mature 
spines, high-resolution force mapping indicated a higher 
concentration of LIMK1 proteins at the head compared to 
the shaft, illustrating its vital role in spine development.

In the study by Magdesian et al. [20], the resistance of 
single axons to damage was assessed through the creation 
of nanoscale nerve constriction injuries. Axonal degenera-
tion following traumatic brain injury or nerve compression 
caused by extraneural tissue expansion is a common cause 
of temporary and permanent disability. Utilizing AFM as 
both an imaging and mechanical tool, the study compressed 
axons from rat hippocampal or dorsal root ganglion (DRG) 
neurons, revealing that DRG axons were significantly more 
elastic and are at least six times more resistant to mechani-
cal force than hippocampal axons (Fig. 3). Additionally, the 
elastic modulus (EM) of live axons was measured to confirm 
that the differential susceptibility of hippocampal and DRG 
axons to mechanical injury is influenced by differences in 
elasticity stemming from distinct cytoskeletal architectures. 
The main components of the axonal cytoskeleton undergo 
changes during development and myelination. Demyelina-
tion, a common occurrence in different degenerative dis-
eases (such as multiple sclerosis or Leukodystrophies in the 
CNS, and Guillain-Barre syndrome or Charcot-Marie-Tooth 
disease in the Parasympathetic nervous system (PNS)), 
was shown to increase neurofilament density, decrease 

microtubules density, and impede axonal transport in both 
the PNS and CNS. These alterations in cytoskeletal com-
position affect the viscoelastic properties of axons and con-
tribute to either increased or decreased axonal resistance 
to damage. The current model developed for single local 
degeneration of axons could potentially be applied to drug 
screening in the field of regenerative medicine.

In a more recent study, Chuang et al. [23] explored the 
connection between axonal viscoelasticity, fibre anisotropy, 
and myelination during brain development. Utilizing AFM 
in conjunction with in situ fluorescent imaging of primary 
neuron-oligodendrocyte co-cultures from Sprague Dawley 
rats, they monitored the progressive myelination of axons, 
noting a corresponding increase in stiffness. By quantify-
ing myelin deposition along axons through immunofluo-
rescence, they established a positive correlation between 
myelination and increased axonal stiffness over time. AFM 
measurements indicated that myelinated sections of a sin-
gle axon consistently exhibited higher Young’s modulus 
values compared to adjacent unmyelinated sections. Fur-
thermore, force-relaxation analysis revealed that the myelin 
sheath regulates the viscoelastic properties of axons over 
time. These results underscore a direct link between myeli-
nation, axonal orientation, and viscoelasticity, providing 
crucial insights into the mechanical properties of the devel-
oping brain and their relevance to pediatric neurological 
disorders and injuries.

Fig. 2  Schematics illustrating 
AFM-based BK probing [32] 
a Schematic showing the func-
tionalization of the AFM tip 
with a BK antibody. b Schemat-
ics showing the functionalized 
probe detecting BK channels 
and FD curves obtained in the 
presence and absence of BK 
channels. CM denotes cell 
membrane. c Representative 
force-distance curves observed 
under the various conditions. 
d Microscopy image and 
schematic showing the use of an 
AFM to detect BK channels on 
neurons using a functionalized 
probe. e Representative AFM 
heatmaps displaying specific 
BK probe binding events over 1 
µm2 areas. Colours represent the 
measured force of specific bind-
ing events. f Graphs comparing 
the unbinding force and BK 
channel density between WT 
and KO neurons
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In order to understand the influence of the mechanical 
environment on neuronal growth, Koser et al. [22] used the 
model of developing Xenopus laevis optic pathway to study 
axon pathfinding. They cultured retinal ganglion cell (RGC) 
axons on polyacrylamide substrates of controlled stiffness 
mimicking those of brain tissue (0.1 kPa and 1 kPa). It was 
found that tissue stiffness regulates axon length and degree 
of spreading, with axons growing faster and more uniformly 
on stiffer substrates, while exhibiting slower, more explora-
tory growth on softer substrates. To further assess the in 
vivo mechanical environment encountered by RGC axons, 
AFM was employed to measure stiffness gradients in the 
developing brain. Tissue heterogeneities were observed at 
the two different developmental time points and RGC axons 
were observed to grow perpendicular to the local stiffness 
gradient in the brain, turning away from stiffer and toward 

the softer regions (Fig. 4). Additionally, applying a sustained 
compressive force of 30 nN with AFM to Xenopus brain, 
induced local stiffening of the tissue without changing the 
chemical environment. Similarly, this led to axons avoid 
growing under the probe where compressive strain was larg-
est. This behaviour highlights the axons' capacity to respond 
to mechanical cues, a process found to be dependent on the 
mechanosensitive protein Piezo1. This study emphasizes the 
critical role of mechanical cues in guiding axonal growth 
and CNS development.

In a study focused on 3D extracellular matrix envi-
ronments, Ong et al. [21] developed a biomimetic fibre 
platform to examine how oligodendrocytes (OLs) respond 
to mechanotransduction during myelination. These fibres, 
designed to mimic neuronal axons, were fabricated using 
electrospinning techniques and suspended between 

Fig. 3  Axonal compression experimental model [20]. a (i) A bead attached to the tip of the AFM cantilever was used to gradually compress 
(sub-nN force) the DRG and hippocampal axons cultured in parallel channels. The axonal response to compression was influenced by the dura-
tion and magnitude of the applied force. After releasing the compression force, the four responses include : (ii) axons recovered to the original 
state, (iii) axons remained permanently deformed, (iv) axons entered a degenerative process characterized by increased focal axonal swelling 
(FAS), and (v) in severe cases, axonal rupture occurred. DRG axons are more resistant to compression than hippocampal axons. b After com-
pression with 540 Pa for 10 min, DRG axons completely recovered. However, at higher pressures, FAS was resulted along the whole axon 
(arrows). c Single hippocampal axons were compressed with pressures ranging from 65 - 550 Pa for 10 - 30 mins. Axonal shape and mitochon-
dria transport were not recovered after compression with pressures > 65 Pa for 10 mins. Each panel represents one axon at different time points, 
before (*), during, and after compression (**). Lower panels denotes 3x zoom of the compression region of the axons before and after compres-
sion release. Scale bar : 10 µm
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supports to establish a stiffness gradient without chang-
ing the fibre’s topography or diameter. AFM was used to 
measure the intrinsic stiffness of individual fibres and the 
overall stiffness of the fibre platform, enabling precise 
tuning of mechanical properties. On these electrospun 
fibres, which emulate the diameter of CNS axons, OLs 
were observed forming myelin sheaths of physiological 
length. Differentiation was assessed at day 3 by examin-
ing the expression of myelin basic protein (MBP) in cell 
bodies, and myelination at day 10 by confirming the pres-
ence of sheaths completely surrounding the fibers. Results 
showed that increased fibre stiffness led to more cells 
expressing MBP but fewer cells forming myelin sheaths, 
suggesting that higher ECM stiffness, as observed in 
chronic multiple sclerosis (MS) lesions, could hinder 
remyelination. The study also indicated that OL matura-
tion phases (differentiation and myelination) are regulated 
independently.

In another investigation, Moeendarbary, Weber and Sheri-
dan et al. [34], assessed the elasticity of healthy rat brain 
tissue and the changes following a neocortex stab injury 

using AFM. Glial cells, crucial in local immune responses 
and wound healing in the CNS, form glial scars post-injury. 
AFM stiffness mapping of the scarred regions revealed that 
CNS tissue tends to soften significantly around the injury 
site, extending outward to distant areas. This softening cor-
relates with increased levels of vimentin, glial fibrillary 
acidic protein (GFAP), laminin, and collagen IV. Increased 
vimentin levels, indicates the proliferation of immature glia 
and new-born neural stem cells. Upregulation of collagen 
IV and laminin could be a consequence of the destruction of 
blood vessels. Notably, the largest reductions in cortical elas-
ticity were noted closest to the injury, where upregulation of 
glial intermediate filaments and ECM components was most 
pronounced. This softening may hinder neuronal regrowth 
in adult mammals due to altered mechanical signals, such 
as those caused by myelin breakdown which exposes inhibi-
tory molecules like Nogo. The study highlighted the soft 
mechanical signature of glial scars following traumatic inju-
ries, suggesting the need for appropriate mechanical sig-
nals in regenerative medicine strategies and neural implant 
designs to support recovery post-CNS injuries.

Fig. 4  Neurons grow toward soft tissue [22]. a Schematic depicting how local gradients in brain tissue stiffness perpendicular to the RGC axon 
growth direction (M) and the local optic tract (OT) curvature (C) were determined. b Axons turned toward the softer side of the tissue preferen-
tially in vivo. Data plot showing relationship between M and C. c Same data as (B) represented in a bar chat. n : number of measurements from 
7 animals. d-e Time-lapse imaging of individual axon bundles growing on a stiffness gradient that mimicked in vivo conditions revealed that in 
vitro, in the absence of chemical gradients, RGC axons preferentially turned toward the softer side of the substrate. Scale bar : 20 μm. f Eye pri-
mordium cultured on a similar stiffness gradient (colour) showed that axons grow more clockwise in the left half and more counterclockwise in 
the right half of the image, demonstrating a preference for turning toward the softer side of the substrate. Scale bar : 200 μm. g Quantification of 
individual axon segment orientations confirmed preferential turning toward the soft side of the substrate
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Emerging clinical applications of AFM 
in neurological disorders

Harnessed with the knowledge developed through experi-
mental models and better understanding of the biophysical 
data, the use of AFM in studying NDD in clinical applica-
tions has emerged. Subsequent sections highlight some of 
the major developments in the study of Alzheimer’s Disease 
(AD), Parkinson’s Disease (PD), amyotrophic lateral sclero-
sis (ALS) and CNS tumours.

Neurodegenerative diseases

NDD are increasingly becoming a societal burden, under-
scoring the urgent need for better diagnostic and therapeu-
tic strategies. As discussed in previous sections, AFM has 
emerged as a powerful tool, contributing significantly to 
our understanding and characterization of the pathogenic 
mechanisms of neurological disorders in experimental 
models. Consequently, there is a growing interest in inte-
grating this sophisticated technology into clinical research 
and the diagnosis of NDD. Current research in this field is 
hampered by several challenges, including limited thera-
peutic options and the absence of effective means for early 
diagnosis, which is crucial for timely intervention [35]. 
Additionally, there is a lack of disease-specific biomark-
ers and an incomplete understanding of how misfolded 
proteins and protein aggregates cause neurotoxicity, which 
are central to proteinopathic NDDs like AD and PD. In 
this subsection, we will delve into the clinical applica-
tions of AFM in characterizing biomarkers in biofluids 
such as CSF and blood. We will explore how AFM facili-
tates nanoscopic structural analysis of these biomarkers, 
providing deeper insights into the onset and progression 
of NDD. Furthermore, we will examine recent efforts to 
enhance AFM's performance in terms of data analysis and 
quantification, aiming to boost its translational potential 
for clinical use and diagnosis.

Alzheimer’s disease

The current approach to diagnosing AD primarily depends 
on neuropsychological tests and neuroimaging. However, 
this method faces significant challenges. The accuracy of 
cognitive assessments in predicting future risk of progres-
sion to AD is often limited, making it difficult to reliably 
identify the condition at a very early stage [36]. Addition-
ally, the high cost of neuroimaging can be a barrier, leading 
to situations where individuals receive a late diagnosis or, in 
some cases, no diagnosis at all [37]. This situation highlights 
the need for more accessible and accurate diagnostic meth-
ods for AD, especially at the pre-clinical stage, where early 

screening and diagnosis may reduce the risk of developing 
AD by as much as one third [38].

In this context, CSF has become increasingly important in 
the clinical assessment of AD [39]. Its interaction with the 
extracellular regions of the brain mirrors neuropathological 
changes, making CSF a valuable source for identifying AD 
biomarkers [40]. However, traditional CSF analysis meth-
ods, such as fluorescence correlation spectroscopy [41], are 
limited due to their reliance on fluorophore labels, which can 
alter oligomer size distribution [42]. Cryo-electron micros-
copy has been effective in revealing polymorphisms in brain-
derived amyloid fibrils [43], but its cryogenic sample prep-
aration process, can potentially distort the fibril structure, 
thereby affecting the accuracy and usability of the results 
[44]. As such, AFM has emerged as a useful and promising 
label-free technique to examine and characterise the pro-
tein aggregates in CSF. The insights gained from AFM can 
potentially revolutionize the diagnosis and prognosis of AD, 
offering a more precise and reliable approach to understand-
ing this complex condition.

In an earlier effort to resolve the amyloid fibrils in the 
CSF of patients with mild cognitive impairment (MCI) 
and AD, Yue and colleagues performed an AFM-based 
nanoscale characterization of the physical biomarkers in 
CSF (Table 2), and developed a computational algorithm 
which integrate these biomarkers and cognitive assessment 
data to provide an unbiased diagnosis of AD and predict 
its progression [14]. A subsequent study by De et al. also 
tapped on the nanoscale sensitivity of AFM and noted higher 
proportions of larger and longer protofibrilar aggregates in 
the CSF of AD patients, suggests an important correlation 
between the size distribution of these aggregates and the 
progression of disease [15]. A more recent AFM study fur-
ther confirmed that fibril lengths are higher in CSF of AD 
patients (Fig. 5A-F) [45]. The fibril length was noted to be 
inversely correlated with CSF amyloid beta (Aβ) 42/40 ratio 
and CSF p-tau protein levels, which allows for prediction of 
amyloid and tau pathology at accuracies of 94% and 82%, 
respectively.

Although AFM is increasingly recognized as a valuable 
tool for screening AD biomarkers in cerebrospinal fluid, 
the approach faces fundamental challenges, such as the 
invasiveness of the lumbar puncture procedure required to 
obtain CSF. Moreover, it has been observed that amyloid 
levels in CSF may decrease due to the lumbar puncture itself 
[46]. As such, blood plasma has emerged as a less invasive 
alternative for screening [47, 48]. However, the presence 
of numerous non-AD related proteins and biomarkers in 
the plasma can potentially compromise the efficiency and 
accuracy of blood-based AD diagnosis [49]. While there 
are ongoing efforts to evaluate the diagnostic accuracy of 
blood-based screening of AD biomarkers, there is growing 
evidence of pathological AD protein aggregates adsorbed on 
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the surface of red blood cells (RBCs). A ground breaking 
study by Nirmalraj and colleagues performed nanoscopic 
profiling of protein aggregates on RBCs of AD patients and 
noted significant age and stage-specific differences in size, 
shape, morphology, assembly and prevalence of these aggre-
gates (Fig. 5H) [16]. Similarly, Taneva and colleagues also 
reported significant shrinkage of platelet volume accompa-
nied by 1.5 times higher RBC volume in AD patients [50].

Parkinson’s disease

Similar to AD, protein aggregation is also a key factor in the 
pathogenesis of PD. Dysregulated protein homeostasis leads 
to the accumulation and aggregation of neurotoxic proteins 
such as β-amyloid and α-synuclein [51]. These aggregates 
spread and accumulate further, overwhelming the clear-
ance systems and ultimately resulting in neuronal death 
[52]. However, little is known about the characteristics and 

distribution of the subspecies of these oligomeric proteins. 
They exist in low concentration down to sub-picomolar 
level, and highly heterogenous in terms of size and structure, 
posing significant challenges for current measurement and 
quantification methods. As such, Labonova and colleagues 
harnessed the high resolving capability of AFM to analyse 
both the serum and CSF from PD patients (Fig. 5I and J) 
[53]. Their research revealed a higher proportion of pro-
tein aggregates exceeding 150 nm in length in PD patients. 
Moreover, they observed a distinct distribution of β-sheet 
aggregates between PD patients (50% α-synuclein and 50% 
β-amyloid) and control subjects (30% α-synuclein and 70% 
β-amyloid). This specific ratio enabled the discrimination 
of PD cases from controls with an impressive accuracy of 
98.2%. These findings, made possible by the nanoscopic res-
olution of AFM, hold significant promise for future applica-
tions in diagnostics, monitoring PD progression, and evalu-
ating the efficacy of PD therapies.

Fig. 5  Evaluation of Clinical Samples of NDD Patients Using AFM (a) Schematics of the collection of CSF and the subsequent deposition of 
protein fibrils on gold substrate within a liquid cell for AFM imaging. b Phase-contrast AFM image showing three distinct conformation of pro-
tein fibrillar aggregates in either parallel (green), sliced (red) or T-junction (blue). c-e High resolution AFM height, phase and overlayed images 
of individual fibrils detected in the CSF of AD patient. f AFM height image of ultralong single fibrils. Adapted and modified from [45]. g The 
statistical plot, overlayed with a Lorentzian fit, of the mean height of spherical aggregate (red) and the mean height of fibrillar aggregate (grey) 
on the Red blood cellf (RBC) surface (right insert). h A schematic showing the protein aggregate assembly on RBCs as a function of increasing 
patient age and decreasing cognition. Adapted and modified from [16]. i-j Representative AFM images of serum from PD patient and healthy 
control showing extensive presence of aggregates in PD serum. Adapted and modified from [53]. k-n Representative AFM images of platelets 
from healthy individual (k) and patients with PD (l), ALS (m) and AD (n). Adapted and modified from [55]
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Table 2  Notable applications of AFM in the evaluation of clinical samples from NDD patients

NDD Type Samples AFM Measurement Major Clinical Findings Ref.

Alzheimer’s Disease (AD) CSF Young’s modulus (stiffness, E) of pro-
tein components (non-aggregated)

Healthy: 63.542 ± 20.17 MPa
Mild AD: 97.38 ± 47.37 MPa
Moderate AD: 127.0 ± 53.4 MPa
Severe AD: 138.3 ± 66.69 MPa

[14]

Young’s modulus (stiffness, E) of pro-
tein aggregates and particles

Healthy: 11.78 ± 11.54 MPa
Mild AD: 24.21 ± 16.86 MPa
Moderate AD: 37.38 ± 16.5 MPa
Severe AD: 54.09 ± 23.41 MPa

Height of protein aggregates Healthy: 20.72 ± 7.06 nm
Mild AD: 36.77 ± 8.97 nm
Moderate AD: 51.53 ± 11.40 nm
Severe AD: 69.69 ± 12.99 nm

Length of protein aggregates Healthy: 40 – 80 nm
MCI: 50 – 100 nm
AD: 50 – 400 nm

[15]

RBC Size and prevalence of fibrillar aggre-
gate on RBC surface

Amyloid (-): 7.680 ± 2.911 nm (34.5 
%)

Amyloid (+): 8.211 ± 2.416 nm (68.0 
%)

Amyloid (?): 9.247 ± 2.601 nm (55.0 
%)

[16]

Volume of biconcave-shaped RBC Healthy: 18.01 ± 3.59 µm3

AD: 25.52 ± 7.27 µm3
[54]

Young’s modulus (stiffness, E) of aged 
(ex-vivo at 4°C) RBC

Healthy (10-day-aged): 1.56 ± 0.6 MPa
AD (10-day-aged): 2.18 ± 0.4 MPa
Healthy (30-day-aged): 3.10 ± 0.8 MPa
AD (30-day-aged): 3.28 ± 0.4 MPa

Platelet Volume of platelet Healthy: 3.20 ± 1.28 µm3

AD: 2.19 ± 0.55 µm3
[50]

Young’s modulus (stiffness, E) of 
platelet

Healthy: 0.60 ± 0.21 MPa
AD: 1.25 ± 0.29 MPa

[55]

Parkinson’s Disease (PD) Serum and CSF Size and proportion of larger 
α-synuclein aggregates

Healthy: 20 – 200 nm (mostly < 150 
nm)

PD: 20 – 200 nm (mostly > 150 nm)

[53]

Protein aggregate conformation and 
proportion

Healthy: 50% α-syn and 50% β-amyloid
PD: 30% α-syn and 70% β-amyloid

RBC Diameter of crenate-shaped RBC Healthy: 7.75 ± 0.25 µm
PD: 8.39 ± 0.93 µm

[54]

Volume of crenate-shaped RBC Healthy: 13.60 ± 2.94 µm3

PD: 24.09 ± 9.97 µm3

Young’s modulus (stiffness, E) of aged 
(ex-vivo at 4°C) RBC

Healthy (fresh): 1.18 ± 0.5 MPa
PD (fresh): 1.67 ± 0.4 MPa
Healthy (10-day-aged): 1.56 ± 0.6 MPa
PD (10-day-aged): 2.10 ± 0.5 MPa

Platelet Volume of platelet Healthy: 3.20 ± 1.28 µm3

PD: 1.48 ± 0.34 µm3
[50]

Young’s modulus (stiffness, E) of 
platelet

Healthy: 0.60 ± 0.21 MPa
PD: 2.04 ± 0.36 MPa

[55]

Height of platelet Healthy: 1.00 ± 0.18 µm
PD: 0.53 ± 0.12 µm

Roughness of platelet
(Rrms)

Healthy: 14.3 ± 2.2 nm
PD: 5.4 ± 1.2 nm
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Additionally, several AFM studies focusing on blood 
cells in PD patients showed trends similar to those in 
AD patients. Strijkova-Kenderova and colleagues noted 
distinct differences in shape, size and volume of RBCs in 
PD patients, where the RBCs are predominantly exhib-
ited a crenate shape, and significantly larger in terms of 
diameter and volume as compared to RBCs from healthy 
subjects [54]. Following this, Taneva and colleagues 
conducted a study that reported a significant shrinkage 
in platelet volume by 55.7% and a 1.5-fold increase in 
RBC volume compared to healthy controls. Furthermore, 
this study highlighted a notable reduction in the surface 
roughness of RBCs in PD patients, indicating a substan-
tial membrane smoothening due to modified cytoskeletal 
integrity. Complementing these findings, Strijkova and 
colleagues performed a separate study on platelets from 
PD patients and reported similar cellular properties, as 
shown in Fig. 5K-N and outlined in Table 2, along with 
marked increase in the platelet stiffness when compared 
to healthy subjects [55]. These studies collectively offer 
valuable insights into the cellular alterations in PD, 
enhancing our understanding of the disease at a nano-
scopic level.

Amyotrophic lateral sclerosis

Despite being one of the most common and degenerative 
motor neuron disease, ALS still lacks clinically validated, 
reliable and specific markers for diagnosis and progression 
monitoring [56]. There are ongoing efforts to identify new 
biomarkers and validate the growing list of potential bio-
markers in CSF, including TAR DNA-binding protein 43 
(TDP-43) [57], neurofilament light chain (NfL) [58] and 
mutations in superoxide dismutase 1 (SOD1) gene [59]. 
Interestingly, there are emerging indications that Aβ42 
might play a role in ALS pathogenesis [60, 61]. The study by 
Colletti and colleagues found that ALS patients with a lower 
Aβ42/40 ratio had a shorter survival period, although neither 
the level of Aβ 1-42 nor the Aβ42/40 ratios influenced the 
rate of disease progression [60].

This lack of correlation may be better understood through 
insights from AFM-based studies on the CSF samples from 
AD patients. These studies suggest that rather than the types 
of protein aggregates, specific subspecies of protein aggre-
gates and fibrils, defined by their length, size and conforma-
tion, might be more neurotoxic and contribute to disease 
onset and progression. Traditional detection methods, such 

Table 2  (continued)

NDD Type Samples AFM Measurement Major Clinical Findings Ref.

Amyotrophic Lateral Sclerosis (ALS) RBC Diameter of biconcave-shaped RBC Healthy: 8.02 ± 0.34 µm
ALS: 8.57 ± 0.48 µm

[54]

Volume of biconcave-shaped RBC Healthy: 18.01 ± 3.59 µm3

ALS: 36.79 ± 13.27 µm3

Diameter of crenate-shaped RBC Healthy: 7.75 ± 0.25 µm
ALS: 8.50 ± 0.37 µm

Volume of crenate-shaped RBC Healthy: 13.60 ± 2.94 µm3

ALS: 21.08 ± 4.20 µm3

Young’s modulus (stiffness, E) of aged 
(ex-vivo at 4°C) RBC

Healthy (fresh): 1.18 ± 0.5 MPa
ALS (fresh): 1.82 ± 0.5 MPa
Healthy (10-day-aged): 1.56 ± 0.6 MPa
ALS (10-day-aged): 2.34 ± 0.4 MPa
Healthy (20-day-aged): 2.48 ± 0.8 MPa
ALS (20-day-aged): 2.69 ± 0.4 MPa
Healthy (30-day-aged): 3.10 ± 0.8 MPa
ALS (30-day-aged): 3.29 ± 0.4 MPa

Platelet Volume of platelet Healthy: 3.20 ± 1.28 µm3

ALS: 1.13 ± 0.34 µm3
[50]

Young’s modulus (stiffness, E) of 
platelet

Healthy: 0.60 ± 0.21 MPa
ALS: 2.22 ± 0.33 MPa

[55]

Height of platelet Healthy: 1.00 ± 0.18 µm
ALS: 0.50 ± 0.17 µm

Roughness of platelet
(Rrms)

Healthy: 14.3 ± 2.2 nm
ALS: 8.0 ± 0.9 nm
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as ELISA-based antibody capture of the proteins, lacks the 
nanoscale resolving power of AFM and often only provide 
data on the total mass of aggregates. This approach poten-
tially overlooks crucial details about the subspecies of pro-
tein aggregates, including size and length, which may play 
a pivotal role in the pathogenesis of neurodegenerative dis-
eases like AD and ALS.

Building on the need for more precise antibody enrich-
ment tools in neurodegenerative disease research, Williams 
and colleagues developed a novel AFM-based biopanning 
technique specifically designed to isolate antibodies based 
on their morphology [62]. These antibodies are highly selec-
tive for specific protein variants of TDP-43, which are exclu-
sively found in human ALS brain tissue. By tapping on the 
unique capabilities of AFM, the team performed multiple 
rounds of negative panning steps to remove phage clones 
that bound to off-target antigens, further enriching the pool 
of clones specific to target protein variants during the posi-
tive panning step. This technique represents a significant 
advancement, offering a more targeted method for identify-
ing and studying protein variants associated with ALS.

Central nervous system tumours

The Central Nervous System (CNS) consists of the brain 
and spinal cord, functioning as the central processing hub 
for the entire body. It orchestrates a wide array of com-
plex functions, from regulating involuntary processes like 
breathing to enabling conscious movement, sensory experi-
ences, and cognitive functions [63]. The neuropathologi-
cal classification of CNS tumours, such as glioblastoma 
multiforme (GBM) and meningioma, primarily relies on 
the grading system published by World Health Organiza-
tion (WHO), which largely depends on microscopy-derived 
histomorphological features [64]. However, this grading 
system faces significant intra- and inter-observer variabil-
ity arising from the complexity of morphological details 
which varies extensively across different tumours and 
patients. Additionally, the system is further complicated 
by technical variations in histopathological procedures like 
staining protocols. The individual experience of the diag-
nosing pathologist also plays a vital role, as different levels 
of expertise can lead to varied interpretations of the same 
histological features, resulting in the diagnostic variability 
of the grading system [65].

Accurate grading of brain tumours is crucial because it 
not only determines the patient's prognosis but also dictates 
the choice of treatment options. In pursuit of enhancing the 
assessment and grading of CNS tumours, clinicians are now 
incorporating biophysical methods like AFM into the pro-
cess, which provides nanometre resolution and offers a more 
detailed analysis of tumour properties using freshly resected 
tumour tissues. This integrative approach facilitates a more 

precise and comprehensive evaluation of CNS tumours, 
which is essential not only for effective patient management, 
but may also improve current surgical practice and poten-
tially leading to more complete tumour excision. In this sub-
section, we will explore recent AFM-based studies on CNS 
tumour stiffness and how these findings may be useful in 
clinical practice. We will also examine how complementary 
experimental modalities to AFM have provided additional 
insights and contributed to reducing variability in tumours 
grading. Finally, we will discuss the translational challenges 
of AFM in clinical diagnostics and highlight ongoing efforts 
to address these shortcomings.

In their pioneering study, Ciasca and colleagues used 
AFM to study the nano-mechanical properties of freshly 
resected human GBM and meningioma tissues. They 
reported significant difference between the stiffness of GBM 
tissues and the adjacent normal peritumour regions, with 
tumour tissue being up to 10 times stiffer than normal tissues 
[66]. Furthermore, the team was able to establish a Young’s 
modulus maps of GBM tumours, revealing that non-necrotic 
tissues exhibited distinct peaks corresponding to soft and 
stiff structures, while necrotic tissues displayed a more uni-
form distribution. These findings potentially offer unique 
biomechanical signatures that could assist in the classifica-
tion of GBM progression. These observations align with the 
work by Ciesluk and colleagues, who noted not only a higher 
stiffness in GBM tissues, but also a pronounced heterogene-
ity within the primary gliomas and the resultant metastatic 
tumours [67]. The stark contrast in stiffness, together with 
additional information such as stiffness distribution mapping 
of the tumour sample, has great potential for enhancing sur-
gical practice, particularly in redefining the extent of tumour 
excision, which may lead to improved surgical outcomes and 
better patient prognosis.

Furthermore, the current grading system for CNS tumours 
could be enhanced by incorporating nanomechanical prop-
erties, as emerging evidence suggests that tumour stiffness, 
sometimes manifesting before obvious histological and clini-
cal signs, may affect growth and metastatic potential [68, 69]. 
While the relevance of mechanical parameters is clear, it's also 
crucial to understand the biochemical underpinnings of these 
nanomechanical differences, as they offer significant insights 
into neuropathological processes. In this context, Abramcyk 
and Imiela have pioneered work by using AFM for stiffness 
evaluation of fresh brain tumour tissues and complemented 
this with Raman spectroscopy and imaging to analyse the bio-
chemical composition [70]. They noted significant dysregula-
tion of protein and lipid metabolism in malignant medulloblas-
tomas, associated with elevated stiffness and heterogeneity. 
These biochemical and nanomechanical signatures could be 
key in the identification of predictive cancer markers and eval-
uation of treatment options that target the mechanical aspects 
of cancer progression.
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Despite the growing recognition of AFM-derived stiffness 
data in evaluating CNS tumours, there are inherent chal-
lenges and technical limitations in the traditional histomor-
phological workflow that contribute to observer variability 
in the current grading system. Unlike conventional histo-
logical methods, AFM requires no staining, thereby avoid-
ing complications that may arise from factors like section 
thickness, fixation time, and the types or purity of reagents 
which all may contribute to variations in results. Conse-
quently, the topographical data generated from AFM scans 
offer a more robust and objective approach in the neuro-
pathological assessments of CNS tumours samples. Further-
more, even with consistent histomorphological data, grading 
accuracy can be affected by varied assessments from indi-
vidual observers, influenced by differences in experience and 
interpretation of morphological information. Addressing this 
issue, Schilcher’s research group adopted a data-modelling 
and genetic programming approach to classify AFM images 
of CNS tumours and attained accuracy of over 90% [71, 72]. 
This computer-assisted approach was designed to minimizes 
the intra- and inter-observer variations in tumour grading, 
and has demonstrated a 94.74% accuracy in distinguishing 
grade II tumours that were previously classified as grade 
IV, thereby enabling a more accurate and tailored therapy 
option [72].

While AFM shows promising potential in providing quan-
titative insights to the evaluation of surgically removed CNS 
tumours, there remains a considerable gap in fully imple-
menting this technique in clinical diagnosis. One of the 
key obstacle of the translational process is the complexity 
of AFM data analysis, which is both time consuming and 
requires specialised knowledge in physics and mathemat-
ics [73]. To bridge this gap, researchers have developed 

various automated workflow that significantly enhance the 
efficiency of data analysis and enable the integration of such 
data into the classification of tumours. A notable advance-
ment in this area is the development of a fully automated 
neural network approach by Minelli and colleagues for ana-
lysing AFM data of histologically classified tumour sam-
ples. This innovative approach, which is both model-free 
and operator-independent, bypasses the need for FD curve 
fitting and further interpretation, thus functioning as a direct 
diagnostic tool [74]. The team reported good classification 
of the tumour samples, and it appears to be more effective 
than the conventional FD curve fitting, which only considers 
a small portion of the FD curve.

A more recent effort from the same research team have 
explored strategies to reduce the AFM measurement time 
[75]. They have modelled AFM mapping using a binomial 
process, based on the estimation of the minimal number 
of FD curves needed to classify CNS tumour tissue with 
a 0.005 confidence level. Although the findings are largely 
preliminary and a more complex and comprehensive models 
are required to validate the applicability of the approach, its 
promising results indicate a potential direction for future 
efforts in enhancing the practicality of AFM in clinical set-
tings. This development represents a significant step towards 
making AFM a more feasible and effective tool in the clini-
cal evaluation of CNS tumours Table 3.

Challenges and limitations

In order to provide a more accurate and reliable diagnosis of 
NDDs using AFM based morphology and mechanics-based 
markers, the challenges and limitations of AFM (Table 4) 

Table 3  Notable clinical applications of AFM in the evaluation of CNS tumour samples

CNS Tumour Type AFM Measurements Major Clinical Findings Ref.

Control Tumour

Glioblastoma Multi-
forme (GBM)

Young’s modulus (Average 
stiffness, E)

Peritumoural White Matter: ~ 1 kPa Necrotic: 240 - 380 Pa
Core: 10 kPa

[66]

Healthy: 66.4 ± 39.2 Pa
Adjacent to GBM: 47.2 ± 21.9 Pa

Necrotic: 269.8 ± 133.9 Pa [67]

Peritumour: 1460 ± 98 Pa Necrotic: 206 ± 12 Pa
Core: 14.6 ± 0.9 kPa

[74]

Non-tumour gliosis: 10 – 180 Pa Low grade glioma (WHO II/III):
50 – 1400 Pa
Necrotic + Core (WHO IV):
70 – 13500 Pa

[76]

Meningioma Young’s modulus  (Average 
stiffness, E )

Peritumour: 1460 ± 98 Pa Core: 13.4 ± 1.0 kPa [74]
Healthy: 61.2 ± 0.4 Pa Core: 52.7 ± 0.6 Pa [67]

Hysteresis  (Viscoelastic 
response, H )

- Core: 0.53 ± 0.22
Infiltrated dura-mater: 0.40 ± 0.17
Whorl: 0.35 ± 0.1

[66]
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should be considered. Some of the possible solutions to miti-
gate these challenges are presented below.

One limitation of AFM is the reliance on manual opera-
tion and experience in locating areas of interest such as spe-
cific cells within a tissue sample for measurements, resulting 
in low throughput. Commonly, fluorescence-based tech-
niques are employed to pinpoint these areas. For instance, 
Fuhs et al., identified differences in mechanical proper-
ties between naive and ischemia-affected brain regions by 
detecting green fluorescence signals from FITC-albumin 
in mouse brain slices, indicating compromised blood-brain 
barrier integrity [77]. An alternative approach involves 
using deep learning-assisted AFM [78] , which facilitates 
fluorescence-independent identification and automated force 
measurements of cells. This method utilizes deep learning 
algorithms to recognize cell viability and type from optical 
bright-field images without labels. It automatically deter-
mines the positional relationship between the AFM probe 
and the targeted cells, enabling precise and efficient probe 
positioning for high-throughput force measurements. Fur-
ther advancements in AFM technology, like those intro-
duced by Kang et al. [79], have led to the development of 
an autonomous AFM capable of automated initialization, 
surface imaging, and analysis. The system utilizes a faster 
region-based convolutional neural network (faster R-CNN) 
algorithm to identify and locate the laser spot, cantilever, 

and sample surface in space. Using this positional data, the 
system autonomously calibrates and initializes its compo-
nents for topographic imaging. Additionally, the same faster 
R-CNN algorithm was used to detect the objects of interest 
in acquired images and perform image analysis. This autono-
mous setup is critical for enhancing operational efficiency 
and reducing the manual expertise required.

A significant challenge in AFM imaging is the exten-
sive time required to produce high-resolution image maps 
(> 256 x 256 pixels) of large number of cells or tissue areas. 
To enhance speed, one strategy is to reduce the number of 
pixels and scan lines measured. However, this can compro-
mise the resolution of the final images. To counteract this 
loss of detail, deep learning models like very deep super-
resolution (VDSR) [80] or a deep neural network can be uti-
lized to reconstruct μ-path pattern sub-sampled AFM images 
[81]. Another method to increase scanning speed while min-
imizing sample damage involves using High-Speed AFM 
(HS-AFM) with an extremely long AFM tip (a 3 µm long, 
5 - 8 nm in diameter amorphous carbon grown tip on a 100 
- 200 pN/nm soft cantilever). This setup not only achieves 
high spatial resolution but also reduces the risk of cell dam-
age during fast tapping-mode scanning (~100 nm free ampli-
tude, 800 kHz) [11]. Additionally, a novel technique known 
as Ringing mode™ (developed by NanoScience Solutions, 
Inc.) offers a substantial improvement, being up to 20 times 

Table 4  Challenges and limitations of AFM use in clinical applications

Challenges and Limitations Possible Solutions

Sample location
Manual operation and reliance on user experience in locating areas of 

interest such as specific cells within the tissue sample for measure-
ments resulting in low throughput.

Use of fluorescence-based techniques [77].
Fluorescence independent recognition of cells and automated AFM 

force measurements of the identified cells using deep learning image 
recognition [78].

Autonomous operation of AFM using a machine learning-based object 
detection technique [79].

Imaging
Slow AFM imaging speeds. Improve speed by reducing the number of pixels and scan lines meas-

ured followed by post processing to improve resolution via image 
reconstruction using deep neural networks [80–82].

Use of HS-AFM with long tip cantilever [11].
Use of AFM Ringing imaging mode™ [83–85].

Difficulty in locating feature of interest among similar height features in 
AFM topographs.

Improve feature definition through analysis of DFTs of AFM section 
measurements and applying GHPF filters [86].

Low resolution of AFM topographs due to background noise. Image reconstruction using deep neural networks [80–82].
Grading accuracy of tumours affected by varied assessments from 

individual observers, influenced by differences in experience and 
interpretation of morphological information.

Tumour classification using data-modelling and genetic programming 
approach [71, 72].

Mechanical characterization
Time consuming and user dependent data analysis of large datasets. Automated analysis of force-distance curves using machine learning 

(neural networks) [74, 75, 87–89].
 Chemical characterization 
Require chemical modification of AFM probes with specific molecules. Combine AFM with optical spectroscopy (AFM-IR) [90, 91], tip-

enhanced Raman spectroscopy [92, 93].



 Med-X             (2024) 2:8 

1 3

    8  Page 16 of 20

faster than traditional sub-resonance tapping modes like 
Peak Force Tapping, HybriD, and Digital Pulse. This mode 
also simultaneously records eight new physical parameters 
of the samples including restored adhesion, adhesion height, 
disconnection height, pull-off neck height, disconnection 
distance, disconnection energy loss, dynamic creep phase 
shift and zero-force height. The Ringing mode™ is based 
on an analysis of ringing signal (typically regarded as noise 
and filtered out in the existing modes) of the AFM cantilever 
which occurs after the AFM probe detaches from the sample 
surface [83–85]. This innovative approach allows for faster 
and more detailed AFM imaging with less artifacts.

Interpreting AFM topographs can be challenging, par-
ticularly when distinguishing cells or features of interest 
among similar height features. To address this, a diagnos-
tic approach using discrete Fourier transforms (DFTs) of 
standard AFM section measurements has been developed 
to distinguish neural cell edges from their scaffold back-
grounds [86]. This method employs a Gaussian and Butter-
worth frequency domain high-pass (GHPF) filter of appro-
priate degree and cutoff frequency designed to accentuate 
the high-frequency harmonics of the tissue scaffold. This 
enhancement improves the feature definition of nanoscale 
cellular edges in the images. During AFM imaging, some 
artifacts or image distortions may obscure the actual sur-
face features. Post-processing often becomes necessary to 
eliminate or minimize these discrepancies, ensuring clarity 
and accuracy of the surface images. A convolutional neural 
network-based method using the ResUNet architecture has 
been developed to reduce imaging artifacts and noise while 
maintaining crucial topographical features, such as edges 
[82]. Analysing AFM images for brain tumour diagnosis in 
neuropathological brain tissue samples presents significant 
difficulties due to the intricate nature of these images and the 
challenge of extracting relevant structural details. A sophis-
ticated approach combining data modelling and genetic pro-
gramming has been implemented to classify AFM images 
of central nervous system (CNS) tumours, achieving clas-
sification accuracies over 90% [71, 72]. This high level of 
accuracy is crucial for effective diagnosis and enhances the 
utility of AFM in medical diagnostics.

For AFM mechanical properties measurements, a major 
obstacle in the use of AFM in clinics is the complexity of 
the data analysis. It requires specialized, experienced per-
sonnel in the processing (curve fitting through mathemati-
cal models) and interpretation of data. An innovative solu-
tion is the use of neural networks for pattern recognition of 
FD curves (based on curve shape) to automatically classify 
them, eliminating the need for curve-fitting with compli-
cated mathematical models [74, 75]. Measured FD curves 
are often disturbed by detachment of samples from support-
ing substrate, irregularities of the heterogeneous sample 
surface or large adhesive forces between sample and AFM 

probe. These artifacts could be spotted by an experienced 
experimentalist and the data curve discarded before evalu-
ation. However, such methods of manual sorting are time 
consuming for large datasets. Machine learning can be used 
to identify artefactual force curves relative to good curves, 
providing a fast and accurate way to perform automated and 
operator independent analysis of large datasets [87, 88].

To enhance the chemical characterization capabilities of 
AFM, it can be integrated with other spectroscopic tech-
niques. AFM tips can act as probes for chemical identifica-
tion in addition to mapping sample topography. AFM-IR 
(AFM-infrared spectroscopy) [94] combines a pulsed, tunea-
ble infrared laser with an AFM, enabling nanoscale molecu-
lar chemical analysis. Similarly, Tip-enhanced Raman spec-
troscopy (TERS) AFM [92] provides nanoscale chemical 
and structural information without the use of labels common 
in super-resolution optical microscopy. These labels could 
potentially affect the structures of labelled species and their 
interactions. This technique uses optical coupling to direct 
an excitation laser to a metallic AFM tip, enhancing the 
Raman scattering at the tip-sample junction and producing 
a hyperspectral image with precise chemical contrast.

The combination of AFM with optical spectroscopy, 
such as with AFM-IR [90, 91] and TERS [92, 93], are 
particularly useful for studying proteins associated with 
neurodegenerative diseases. For example, AFM-IR has 
been employed to reveal significant structural variations 
in amyloid oligomers through their infrared spectra [90]. 
Additionally, tip-enhanced Raman spectroscopy has pro-
vided nanoscale chemical mapping of single amyloid fibrils 
throughout various stages of aggregation, offering valu-
able insights into the fibril formation process [92]. These 
enhancements extend the utility of AFM from physical to 
chemical analysis, broadening its application in medical 
research and diagnostics.

In addition to challenges like the high cost of equip-
ment and the need for broader clinical acceptance, AFM 
faces several barriers in clinical adoption. Despite these 
hurdles, innovative solutions are emerging to address them. 
Increasingly, the use of morphology and mechanics-based 
markers is being recognized for their potential in clinical 
applications [95, 96]. Notably, the commercial nanotech-
nology platform  ARTIDIS® (https:// artid is. com/) has been 
developed to offer rapid diagnostic services. This platform 
can diagnose cancer, assess its aggressiveness, and predict 
the likelihood of metastasis development in less than three 
hours, utilizing a nanomechanical biomarker. It employs a 
nanomechanical sensor to analyse the physical properties 
of tumour cells and their microenvironment. Integrating 
this information with clinical data, the platform can iden-
tify aggressive types of cancer and customize treatment 
plans for individual patients, enhancing personalized medi-
cine in oncology.

https://artidis.com/
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Conclusions and future perspectives

Neurological disorders are becoming an increasingly sig-
nificant societal burden, highlighting the critical need for 
improved diagnostic and therapeutic approaches. As pre-
viously discussed, AFM has proven to be a powerful tool, 
greatly enhancing our understanding of the pathogenic 
mechanisms of neurological disorders in experimental mod-
els. There are also considerable efforts underway to integrate 
this unique technology into clinical research and the diag-
nosis of neurological disorders, with the potential to use 
morphology and mechanics-based markers for identifying 
various NDDs and CNS tumours.

Despite the significant potential of Atomic Force Micros-
copy (AFM) in clinical settings, its widespread adoption 
faces challenges, particularly the time-intensive nature of 
measurements and the complexity of data analysis. Address-
ing these limitations, the integration of advanced machine 
learning techniques, including neural networks for classifica-
tion and automated analysis of force-distance (FD) curves, 
alongside optimized spatial sampling, shows promise in 
overcoming these hurdles while maintaining diagnostic 
accuracy [75]. Moreover, ongoing advancements in compu-
tational modelling and big data analytics are set to further 
enhance the functionality and efficiency of AFM. These 
innovations could facilitate the processing of the extensive 
data generated by AFM, potentially enabling a future where 
real-time analysis and interpretation could be achieved in 
scenarios requiring quick diagnostic decisions, such as dur-
ing acute neurological emergencies or neurosurgical pro-
cedures. Furthermore, developments in high-throughput 
AFM technologies could enable the rapid screening of large 
patient cohorts, facilitating early diagnosis and the monitor-
ing of disease progression and response to treatment. This 
capability would be especially crucial in managing neuro-
degenerative diseases, where early intervention can signifi-
cantly alter disease trajectories.

Furthermore, with the advent of commercial nanotech-
nology platforms like ARTIDIS®, there is a growing pos-
sibility of adopting personalized treatment strategies based 
on morphology and mechanics-based markers [13, 95, 96]. 
These technologies facilitate the tailoring of therapeutic 
approaches to individual patient profiles, which could revo-
lutionize the management of neurological disorders. The 
potential for these platforms to make personalized medicine 
more accessible promises a significant shift in how neuro-
logical conditions are treated, potentially leading to better 
patient outcomes.

Looking forward, the future of AFM in neurology is set 
for transformative growth. As AFM technology continues to 
integrate with other imaging modalities and omics technolo-
gies, it holds the promise of uncovering novel biomarkers 

and therapeutic targets, thereby enhancing the precision of 
diagnostics and treatments. The ongoing evolution of AFM, 
combined with breakthroughs in computational analysis and 
broader diagnostic technologies, is poised to make substan-
tial contributions to the field of neurology, not only deep-
ening our understanding of neurological diseases but also 
improving patient care through more precise and personal-
ized treatment strategies.
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