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Abstract
Addressing the pressing demand for rapid and inexpensive coagulation testing in cardiovascular care, this study introduces a 
novel application of repurposed COVID-19 rapid antigen tests (RATs) as paper-based lateral flow assays (LFAs) combined 
with machine learning for coagulation status evaluation. By further developing a mobile app prototype, we present a platform 
that enables clinicians to perform immediate and accurate anticoagulant dosing adjustments using existing post-pandemic 
resources. Our proof-of-concept employs a random forest machine learning classifier to interpret image feature variations 
on RAT NC membrane, correlating red blood cell (RBC) wicked diffusion distance in recalcified citrated whole blood 
with changes in coagulative viscosity, easily interpreted. Enhanced by confocal imaging studies of paper microfluidics, our 
approach provides insights into the mechanisms dissecting coagulation components, achieving high classification precision, 
recall, and F1-scores. The inverse relationship between RBC wicked diffusion distance and enoxaparin concentration paves 
the way for machine learning to inform real-time dose prescription adjustments, aligning with individual patient profiles 
to optimize therapeutic outcomes. This study not only demonstrates the potential of leveraging surplus RATs for coagula-
tion management but also exemplifies a cost-effective, rapid, and smart strategy to enhance clinical decision-making in the 
post-pandemic era.
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Highlights
• Repurposed COVID-19 RATs provide an ideal platform for observing differences in blood coagulability.
• Random Forest image classification algorithms can facilitate rapid coagulation status assessment on a paper-based LFA 
platform.
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Introduction

The demand for prompt, precise, and cost-efficient coag-
ulability testing is particularly pronounced within the 
demanding environments of intensive care units and car-
diovascular surgery settings, where the judicious admin-
istration of anticoagulants is critical. Navigating the fine 
line between reducing thrombotic events and minimizing 
bleeding risks is a complex and vital aspect of patient care. 
Traditional coagulation tests, such as the activated clot-
ting time (ACT), the most commonly used point-of-care 
(POC) coagulation test, prothrombin time (PT), and acti-
vated partial thromboplastin time (APTT), which assess 
the extrinsic and intrinsic coagulation pathways, are often 
cumbersome and costly, and their use may be limited in 
urgent care situations due to time and resource-constrained 
settings [1–3].

Cardiovascular diseases (CVDs) are the most significant 
cause of death globally, responsible for 32% of all deaths 
according to World Health Organization (WHO) statistics 
[4], with an anticipated increase to 23 million deaths by 
the year 2030 [5]. Although activated clotting time, pro-
thrombin time, and activated partial thromboplastin time 
provide essential data, they fall short in offering immedi-
ate guidance for precise anticoagulant dosing due to their 
reliance on analyses of platelet-poor plasma samples and 
the need for blood processing [6].

The optimization of antithrombotic medication is a crit-
ical component in preventing severe complications such as 
stroke, pulmonary embolism, and myocardial infarction. 
However, without rapid diagnostic methods to evaluate 
complex thrombotic mechanisms, significant bleeding 
incidents often result from excessive anticoagulation, 
contributing to 60% of such adverse outcomes [7]. The 
financial impact of coagulation status monitoring further 
challenges healthcare systems and patients, particularly in 
areas with economic disadvantages [8].

Coagulation testing devices like the CoaguChek® XS 
Plus (Roche Diagnostics GmbH, Mannheim, Germany), 
which measure the international normalized ratio (INR) 
[9], offer accurate coagulation metrics but can be prohibi-
tively expensive due to complex methods of detection, 
often electrochemical, and sometimes necessitate repeated 
testing due to complex user instructions and differences 
in handling. LFAs, with their simple design and use of 
affordable materials such as cellulose or nitrocellulose 
(NC), present an affordable approach to accessible diag-
nostics and means for self-monitoring, thereby reducing 
the healthcare burden [10, 11]. These devices and other 
microfluidics are therefore well-suited for POC testing 
(POCT) across various applications, including sample 
collection [12, 13], disease detection [14, 15] and drug 

delivery [16], yet they often lack outputs that are easily 
interpretable and can be directly translated into clinical 
action.

This study explores the integration of machine learning 
with paper-based LFAs for coagulation status determination. 
It aims to address these gaps by (1) providing automated 
classification of coagulation severity, thus offering insights 
into individual platelet function and fibrin production, and 
(2) enhancing the dosing precision of the antithrombotic 
medication enoxaparin. By simulating 'normal' coagula-
tion diffusion distances, we seek to elevate the accessibility, 
affordability, and efficiency of coagulability testing, poten-
tially leading to improved patient outcomes and supporting 
clinical decision-making processes.

Results

Calcium‑dependent wicking diffusion 
on repurposed RAT NC membrane for coagulability 
assessment

To assess the coagulability of blood under varying patho-
logical conditions, we utilized citrate-anticoagulated whole 
blood. This blood was subsequently recalcified with incre-
mental CaCl2 doses ranging from 0 to 100 mM in 25 mM 
increments. Following recalcification, the blood was intro-
duced to the TESTSEALABS® RAPID TEST KIT COVID-19 
NC membrane, repurposed to evaluate blood coagulability 
through capillary action over a 10 min period (Fig. 1a). The 
extent of coagulation, influenced by the reactivation of the 
coagulation cascade and resultant changes in blood viscos-
ity, was quantified by measuring the diffusion distances of 
the RBC front across different CaCl2 concentrations (n = 7).

The study highlighted a significant impact of recalcifi-
cation on coagulation dynamics in citrate-anticoagulated 
whole blood. Notably, non-recalcified blood exhibited a 
significantly greater diffusion distance (1.304 cm) com-
pared to recalcified groups, which showed progressively 
shorter diffusion distances at 25 mM (0.997 cm), 50 mM 
(0.713 cm), 75 mM (0.531 cm), and 100 mM (0.426 cm) 
of CaCl2 (Fig. 1b, c, d), displaying an inverse relationship 
between RBC wicked distance and increasing CaCl2 con-
centration. Statistical analysis revealed marked differences 
among recalcified groups, especially between 25 and 50 mM 
(p < 0.0001), 50 mM and 75 mM (p = 0.0004), and 75 mM 
and 100 mM (p < 0.0488) concentrations (Fig. 1d).

These findings underscore the utility of repurposed paper-
based LFAs, such as the TESTSEALABS® RAPID TEST 
KIT COVID-19 and OnSite®COVID-19 Ag Self-Test (Sup-
plementary Fig. 1a), in detecting variations in blood coagu-
lability with a high degree of sensitivity. By leveraging this 
approach, we build upon the foundational work of Li et al. 
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Fig. 1   Recalcification of citrate-anticoagulant whole blood produces a dose-dependent wicking distance response. a Image of TESTSEALABS® 
RAPID TEST KIT Cassettes used for experiments and schematic of a sample of citrate-anticoagulated whole blood treated with various concen-
trations of CaCl2 solutions, 0 mM, 50 mM and 100 mM pipetted onto a RATs cassette to measure diffusion distance. b Image and schematic of 
changes in wicked distance categorised into bands of coagulation severity treated with different recalcification doses, 1 (Normal)—5 (Severe) fol-
lowing 10 min diffusion. c Cropped images of wicked distance of citrate-anticoagulated whole blood treated with 0 mM, 25 mM, 50 mM, 75 mM 
and 100 mM recalcification dose (CaCl2) following 10 min of diffusion (Scale bar: 1 mm), with wicked distance equal to the distance travelled 
by RBC front. d The wicked distance of citrate-anticoagulant treated whole blood with different Ca2+ concentrations was quantified with a bar 
chart represented as mean ± SD. (n = 7 ns = not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001, assessed by one-way ANOVA. 
The wicked distance over time of RBC (Circle) and plasma (Square) fronts for e 0 mM and f 100 mM CaCl2 recalcification doses for the 10-min 
experiment period were quantified with a line graph represented as a mean ± SD (n = 3)
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[17], demonstrating the capability to discern distinct levels 
of coagulation using minimal blood volumes akin to those 
obtained from a finger-prick [10]. This innovative adapta-
tion not only showcases the versatility of LFAs beyond their 
original purpose but also highlights the potential for rapid, 
on-site blood coagulability assessments.

Additionally, during the experimental process, the capil-
lary action of the blood sample through the NC membrane 
led to the separation of the blood into its constituent compo-
nents: RBCs and plasma, composed of platelets, proteins and 
coagulation factors [18, 19]. These components accounted 
for approximately 45% and 55% of the blood volume, 
respectively [20].

In Fig. 1e and f, we illustrate the relationship between 
the wicked distances of the RBC and plasma component 
fronts over time as they diffuse through the NC membrane, 
comparing 0 mM and 100 mM CaCl2 concentrations. Our 
experiments demonstrate that, under both recalcification 
conditions, the plasma components travel faster and further 
than the RBC front, as reflected by Li et al. [17]. The wicked 
distances of RBCs stabilize (saturate) after approximately 
8 min and 3.5 min for 0 mM and 100 mM recalcification, 
respectively, reaching maximum diffusion rates of 2.11 mm/
min and 0.684 mm/min. This stabilisation occurs alongside a 
decreasing gradient as the NC membrane becomes saturated. 
Plasma wicked diffusion rates significantly exceed those 
observed at the RBC front, peaking at 3.34 mm/min and 
1.78 mm/min for 0 mM and 100 mM recalcification, respec-
tively, and saturating simultaneously with the RBC front. 
Notably, in the case of 0 mM recalcification, the plasma 
front reaches the end of the NC membrane (~ 22 mm).

The distance travelled and the rate of diffusion of both 
the RBC and plasma fronts adhere to the relationships gov-
erned by Washburn's equation [21, 22] and Darcy’s Law 
[23]. Furthermore, increasing the CaCl2 concentration to 
100 mM dramatically stimulates the coagulation process, 
enhancing the dynamic viscosity of both the RBC and 
plasma components resulting in shorter wicked distances 
and slower rates of diffusion as the blood transitions from 
a viscoelastic liquid to solid gel, resulting in significant 
changes in the rheological properties [24]. This occurs as 
a result of CaCl2-stimulated conversion of fibrinogen into 
fibrin [25], increasing RBC aggregation, a major deter-
minant of blood viscosity [26, 27], particularly under low 
shear conditions and as such, larger effects changes can be 
observed in the RBC front [24]. These findings suggest that 
observing changes in RBC wicked distance may serve as a 
more sensitive metric of coagulation and changes in blood 
viscosity, a metric which has been linked to many CVDs and 
historically been under-utilised due to difficulties in dynamic 
measurements.

The stages of dynamic variation in blood viscosity may 
be better distinguished by increasing the sensitivity of 

paper-based LFAs by adjusting the porosity and hydropho-
bicity of the fluid membrane [28]. Smaller pores result in 
greater capillary forces and slower flow rates because the 
liquid must overcome greater resistance to move through the 
narrow passages. Conversely, larger pores allow for faster 
flow rates as there is less resistance to fluid movement [29, 
30], as it influences the effective diffusion coefficient [31]. 
For paper-based LFAs with very small pore sizes (< 1 μm), 
the blood cell suspensions are not able to diffuse decreasing 
the sensitivity of the assay (Supplementary Fig. 2). SEM 
imaging of the TESTSEALABS® RAPID TEST KIT NC 
membrane revealed pore sizes of approximately ~ 23.1 μm 
(Supplementary Fig. 3), this may be near the ideal pore 
size, larger than native blood cells but smaller than RBC 
and platelet aggregates, improving assay sensitivity. Find-
ing the optimal balance of porosity will help to improve the 
sensitivity of the assay while controlling the time required 
to interpret results.

Differential segregation of blood components 
on repurposed RAT paper microfluidics 
under variable coagulation conditions

Our analysis through ANOVA revealed significant variations 
in the mean fluorescent intensities of platelet integrin recep-
tor glycoprotein IIb (CD41)-labelled platelets across at least 
three distinct groups (F(3,69) = 19.23, p < 0.0001) within 
the LFA framework, indicating distinct platelet activation 
dynamics (Fig. 2a, b). Interestingly, this variation was not 
pronounced with increasing CaCl2 concentrations from 0 to 
100 mM (p = 0.2437), suggesting that while platelet activa-
tion as indicated by CD41 signalling may increase, it does 
not linearly correlate with CaCl2 concentration. Notably, 
the twofold increase in the CD41 signal, coupled with the 
observed definition in the resulting images, points towards 
an increased tendency for platelet aggregation or “clustering” 
at higher CaCl2 levels (Fig. 2a, c).

In parallel, fibrin formation displayed significant inter-
group disparities (F(3,72) = 41.72, p < 0.0001), with the 
100 mM CaCl2 group showcasing the highest mean fluo-
rescence intensity (203.6 Arbitrary Units, AU), starkly con-
trasting with the 0 mM group (p < 0.0001). This suggests 
a pronounced fibrin network formation under high CaCl2 
conditions. Furthermore, the emergence of heterogene-
ously thick fibrin-rich areas post-100 mM CaCl2 treatment 
manifested in more pronounced deviations in the analysis 
of regions of interest (ROI), with means of 109.5 ± 47.65 
for 100 mM compared to 61.02 ± 7.1 for 0 mM (Fig. 2b, c). 
These findings underscore the pivotal role of fibrin in modu-
lating droplet coagulation, reducing diffusion distance, and 
enhancing overall coagulability.

Moreover, SEM imaging of the RAT NC membrane 
provided visual confirmation of these biochemical 
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dynamics (Fig. 2d). The images vividly illustrated the 
compaction effect within blood clots, particularly notice-
able when comparing whole blood with a recalcification 
dose of 0 mM and 100 mM CaCl2 against a control test 
cassette (Fig. 2a). The microscopic analysis revealed a 
significant reduction in the NC membrane pore size with 
increasing CaCl2 levels, visually substantiating the bio-
chemical data on the impact of calcium-induced coagula-
tion through platelet–fibrin interactions [32].

These observations collectively highlight the nuanced 
and complex nature of blood coagulation as captured by 
the innovative repurposing of RAT paper microfluidics. 
The technology not only enables the distinct separation 
of blood components under varying coagulation states 
but also provides a detailed quantitative and qualitative 

insight into the coagulation process, underscoring the 
critical interplay between platelets and fibrin in coagula-
tion dynamics.

Leveraging image‑based machine learning 
for precise coagulation status classification

In the pursuit of advancing quantitative assessments of 
coagulation, we employed image-based machine learning 
to automatically classify coagulation statuses. This approach 
was predicated on analyzing the wicked diffusion distance 
of the RBC front through detailed binned pixel intensity 
histograms for each recalcification treatment group. These 
histograms spanned pixel intensities from 0 (black) to 
255 (white), capturing the gamut from non-recalcified to 

Fig. 2   Wicked distance is viscosity dependent based on platelet–fibrin interactions. a Maximum projection confocal images of the entire RAT 
test strips (scale bar = 2000 μm) blank (top left), antibody characterisation (ABC, top right), 0 mM (bottom left) and 100 mM (bottom right) 
CaCl2 recalcified whole blood sample. Platelets (cyan, first row), fibrin (magenta, second row) and merged (last row). Bar charts representing 
the mean fluorescent intensity for 8-bit images sampled at random ROI across the entire RAT test strip b Platelets and c Fibrin (n = 4, ns = not 
significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001, assessed by one-way ANOVA. d SEM images of blank test strip (left) and the 
RBC region of 0 mM and 100 mM recalcified blood on test strips (scale bar = 20 μm). White arrow (paper fibre), Magenta arrow (fibrin) and 
Cyan (platelets)
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100 mM recalcified blood (Fig. 3b, Supplementary Fig. 4a, 
b, c). Notably, there was a discernible shift toward higher 
pixel intensities with increasing CaCl2 concentrations, sig-
nifying a reduction in the wicked diffusion distance of the 
RBC front. Specifically, the average pixel intensity escalated 

from 125.3 in the non-recalcified cohort to 162.8 in the 
100 mM CaCl2 group (Fig. 3b, c).

To automate the coagulation status classification, images 
of testing strips were standardized to greyscale (Fig. 3a), 
enabling the application of a robust machine learning 

Fig. 3   Machine learning classification of coagulability statuses. a Diagram showing the conversion of an image of a 0 mM COVID-19 test-
ing strip into a greyscale image and then to a binary mask before the first-order statistics and shape/region features and GLCM features were 
extracted. b, c Binned pixel histograms representing the number of pixels and pixel intensities of the images for the different treatment groups 
0 mM and 100 mM of CaCl2. d within a single model (left), e for different test sizes (middle), and f precision-recall curves for the different test 
sizes increasing from 0.2 to 0.5 to 0.7. Confusion matrix outlining the prediction of the RF outputs of true verse predicted coagulation bands. g 
3D cartesian plot of mean first-order stats, eccentricity and entropy features extracted across the different coagulation bands
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model comprising 100 decision trees (Fig. 7). This model 
was refined using 22 meticulously extracted features from 
the images across various treatment groups. These encom-
passed a broad spectrum of variables, including statistical 
metrics (mean, min–max), entropy, geometric properties 
(area, major axis length), and textural features (grey-level 
co-occurrence matrix), ensuring a comprehensive feature 
set for analysis.

The efficacy of our model was evidenced by its predic-
tive performance metrics. During validation, our random 
forest model exhibited outstanding discrimination capabili-
ties, with C-index values for intraclass analysis surpassing 
0.95 (Fig. 3d), showcasing the model's precision in clas-
sifying coagulation statuses. Multiclass ROC analysis fur-
ther demonstrated the model's effectiveness across differ-
ent test sizes, achieving C-index values of 0.83, 0.93, and 
0.96 for test sizes of 0.7, 0.5, and 0.2 respectively (Fig. 3e), 
and Precision-Recall values escalating from 0.65 to 0.90 as 
test sizes decreased (Fig. 3f). These results underscore the 
model's robust capacity for accurate positive predictions and 
comprehensive capture of actual positive instances.

The confusion matrix (Fig. 3g) reaffirmed the model's 
superior class discrimination accuracy, with an average 
success rate of 83.3% in correctly identifying true positives 
and true negatives. This robust classification underscores 
the method's reliability and efficiency in determining coagu-
lation status, setting a promising benchmark for potential 
clinical application.

Integration of wicked diffusion distance in 
anticoagulant dosage optimization for enhanced 
clinical outcomes

The optimization of antithrombotic medication dosages is 
a pivotal element in the management of thrombotic risks 
and bleeding during medical interventions [6]. Achieving 
an optimal balance requires precise adjustment of antico-
agulant levels. In this context, we explored the application 
of paper-based LFAs for refining antithrombotic medication 
dosing strategies. Specifically, we investigated the effects 
of administering a fixed 20U dose of enoxaparin on whole 
blood samples, which were preconditioned with varying 
concentrations of CaCl2, to simulate different coagula-
tion states (Fig. 4a). These experiments aimed to compare 
the coagulation dynamics in the presence and absence of 
enoxaparin.

Our findings revealed that administering 20U of enoxa-
parin significantly altered the coagulation profile, as evi-
denced by increased wicked diffusion distances in samples 
treated with 25 mM and 50 mM CaCl2, compared to con-
trols without enoxaparin (Fig. 4d). Specifically, enoxaparin 
augmented the wicked diffusion distances from 0.981 cm 

to 1.14 cm for the 25 mM CaCl2 group, and from 0.715 cm 
to 0.877 cm for the 50 mM group (Fig. 4b, d), indicat-
ing a notable anticoagulant effect at these concentrations 
(p < 0.05). Conversely, at higher CaCl2 concentrations 
(75 mM and 100 mM), the addition of 20U enoxaparin 
did not significantly extend the wicked diffusion distance, 
suggesting a plateau in the efficacy of this enoxaparin 
dosage under conditions of more pronounced coagulation 
(Fig. 4d).

Further experiments were conducted to evaluate the 
dose–response relationship of enoxaparin in modulating 
coagulation, particularly at the 50 mM CaCl2 concentra-
tion, identified as a critical threshold for assessing the sen-
sitivity and effectiveness of enoxaparin in the paper-based 
LFA system (Fig. 4c, e). Incremental enoxaparin dosages 
ranging from 0 to 100 U were administered, demonstrat-
ing a positive correlation between enoxaparin dosage and 
wicked diffusion distance. Specifically, wicked diffusion 
distances progressively increased with higher enoxaparin 
doses, recording measurements of 0.897 cm, 0.962 cm, 
1.023 cm, and 1.125 cm for 20 U, 50 U, 75 U, and 100 
U of enoxaparin, respectively (Fig. 4e). Statistical analy-
sis confirmed the significance of these findings, with all 
enoxaparin-treated groups showing substantial increases 
in wicked distances compared to the control, achieving 
statistical significance at p < 0.05 for the 20 U group, and 
p < 0.001 and p < 0.0001 for the 50 U, 75 U, and 100 U 
groups, respectively (Fig. 4e).

These results illuminate the potential of utilizing paper-
based LFAs as an innovative and practical tool for clinicians 
to fine-tune antithrombotic dosages. By providing a rapid, 
quantitative method to assess the anticoagulant effect of 
varying enoxaparin doses in real-time, this approach prom-
ises to contribute significantly to personalized patient care, 
optimizing therapeutic outcomes while minimizing bleeding 
risks.

Discussion

The innovative repurposing of widely available COVID-
19 RATs for coagulability testing is a strategic and intel-
ligent adaptation to the post-pandemic era's abundance 
of resources and established infrastructure. These LFAs, 
originally designed to detect viral proteins, have the poten-
tial to be modified for visualizing changes in fluid vis-
cosities, thereby providing a direct measure of coagula-
tion status. Such an adaptation is not only aligned with 
the urgent need for cost-saving measures in healthcare 
but also effectively utilizes the surplus supplies available 
to address a critical clinical demand. The use of ACT, 
APTT, and PT in clinical settings underscores some of the  
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challenges in accurately monitoring and managing anti-
coagulation therapies, which is compounded by varia-
tions due to blood draw site preference/suitability and 
different anticoagulants used. Since its adaptation in the 
late 1960’s ACT is widely employed as a “gold standard”,  
requiring between 2–3 mL of blood, it is and utilised 
during cardiac surgeries, yet it demonstrates significant 

output variability depending on patient haematocrit 
levels, with devices like Hemochron® showing positive 
biases of about 56 s during heparinization​ [33, 34]. This 
variability is made more pronounced when considering 
that blood samples from various sites like arterial lines 
or central venous catheters often show no consistent 
correlation with low-dose heparin administration, as 

Fig. 4   Clinical Relevance – Antithrombotic Medication Dosing. a Schematic showing the testing conditions for CaCl2 and enoxaparin dose-
dependent wicked distance responses. b Images of COVID-19 test strips comparing the wicked distance of samples with and without 20 U 
of enoxaparin treatment for recalcification concentrations of CaCl2 for 0 mM, 25 mM, 50 mM, 75 mM and 100 mM. c Images of COVID-
19 test strips comparing the wicked distance of whole blood samples recalcified with 50  mM CaCl2 treated with enoxaparin doses ranging 
from 0 to 100 U in 25 U increments. Analysis of wicked distance comparing d increasing concentrations of CaCl2 with 20 U of enoxaparin 
and e increasing doses of enoxaparin, as a bar chart represented as mean ± SD. (n = 4, ns = not significant; *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001, assessed by one-way ANOVA
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observed in ICU patients where ACT does not correlate 
well with UFH dosages​​ [35, 36], which causes concern 
for the efficacy of coagulation measurement for CVD 
treatment.

Similarly, APTT is crucial for monitoring the intrin-
sic and common pathways of the coagulation cascade 
but experiences significant inter-laboratory variability 
of 20–30 s due to different reagents used​​​ [3, 36]. It is 
also affected by lupus anticoagulants, which can falsely 
prolong results. When using citrated plasma, aPTT test 
results can vary from 48 to 108 s depending on the assay 
used [3]​. PT, primarily used to monitor warfarin therapy, 
also exhibits variability; differences in tissue factor among 
testing kits can lead to INR variations of about 0.5–1.0 
units, highlighting the need for meticulous calibration and 
issues with non-standardization across testing platforms 
being used today in primary/secondary healthcare setting 
[3]. Alarmingly, Stettler et al. reported that 44.6% and 
49.5% of PT/INR and aPTT variance was unexplained 
by issues with clotting factors [37]. Furthermore, usage 
of these traditional methods often requires separation of 
blood components. In an effort to mitigate the influence 
of hemolysis, they often overlook the role of RBCs in the 
coagulation cascade and require extended periods to pro-
duce results. This becomes critical in time-sensitive situ-
ations, like those encountered in cardiopulmonary bypass 
surgery [38] where rapid adjustments to anticoagulant dos-
ing are imperative due to the swift onset of thrombotic or 
hemorrhagic events [39].

This study serves as a preliminary proof-of-concept dem-
onstrating how the integration of machine learning algo-
rithms with paper-based LFA can expedite the analysis of 
patient coagulation status, as alternative POCT to ACT. We 
have shown that even with minimal blood volumes, on the 
scale that may be obtained through fingerprick collection 
[10], sensitive classifications of coagulation severity are 
achievable without the need for highly trained personnel. 
The system we introduced is not only portable, accessible, 
and cost-effective but also automates the classification of 
coagulation into predefined severity bands, from "Normal, 
0 mM" to "Severe, 100 mM," based on the principle phys-
ics of fluid diffusion observed on NC membranes (Table 1). 
The significant differences in mean fluorescent intensities 
and clot formations observed across the different CaCl2 
treatment groups underscore the impact of platelet–fibrin 
interactions on coagulation severity (Fig. 2a (bottom right), 
c). Additionally, optimising porosity and utilising dynamic 
wicked diffusion distances and rates of the RBC and plasma 
components provides information on the dynamic changes of 
blood viscosity which has been attributed to RBC aggrega-
tion, a major risk factor of atherosclerosis, hyperfibrinogen-
emia and hypertension [40].

The sensitivity of our paper-based LFAs in measuring 
coagulation changes through viscosity variations in recal-
cified, citrated whole blood represents a notable advance 
over previous methodologies that required higher CaCl2 
concentrations and larger sample volumes [17], although 
further optimisation may be achieved through modulating 
the material porosity and hydrophobicity influencing the 
rate of capillary action [41], which would influence the dif-
fusion rates and sensitivity. Our work confirms an inverse 
relationship between the diffusion distance of the RBC front 
and the concentration of CaCl2, supporting findings by Li 
et al., Sweeney et al. and complemented by Saidykhan et al.'s 
research on thrombin-modified LFA for fibrinogen diffusion, 
which are essential for establishing clinical reference ranges 
[17, 42, 43].

In response to the SARS-CoV-2 pandemic, telehealth and 
mhealth technologies [44] rapidly emerged to address the 
stresses of healthcare provider shortages, reduce healthcare 
costs and enhance access to healthcare. This led to a signifi-
cant focus on developing mhealth POCT technologies, with 
a projected market size of US$ 332.7 billion by 2025 [45], 
driven largely by machine learning [46]. Machine learning’s 
continued evolution in healthcare is tackling challenges of 
data fragmentation and enabling the exploration of various 
disease pathologies. The performance of our random forest 
classifier, as indicated in Table 1, exemplifies the potential of 
machine learning to differentiate coagulation statuses with 
high sensitivity and specificity.

Table 1   Categorization scheme for coagulation states correlated with 
recalcification doses

This table correlates numerical labels with their associated descrip-
tive labels for coagulation states as used in the machine learning 
model. The associated recalcification doses for each coagulation state 
are also listed. Labels range from 1 (Normal)—5 (Severe), corre-
sponding to increasing CaCl2 concentrations from 0 mM (represent-
ing a normal coagulation state) to 100 mM (indicating a severe coag-
ulation state). This categorization scheme is integral for interpreting 
the machine learning model's output and for facilitating the clinical 
application of the LFA in anticoagulant dosage optimization

Precision Recall F1-Score

Normal 1.00 1.00 1.00
Mild 1.00 0.83 0.91
Moderate 1.00 1.00 1.00
Significant 0.80 1.00 0.89
Severe 1.00 1.00 1.00
Accuracy 0.95
Macro. Avg 0.96 0.97 0.96
Weighted Avg 0.96 0.95 0.95
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While clinical adoption of machine learning algorithms 
is still nascent, studies by Peng et al. and Arumugam et al. 
demonstrate the superiority of machine learning classifiers 
to outperform traditional models in cardiovascular disease 
detection and differentiation of hypercoagulability in acute 
coronary syndromes and coronary artery disease with nota-
ble accuracy [47, 48]. However, further research is needed. 
Optimizing porosities of the NC membrane can improve sen-
sitivity and test times, enhancing the accuracy and precision 
of machine learning classifiers. Technical improvements, 
such as optimizing lighting and resolution for machine learn-
ing classification and blood sample delivery onto the RAT 
test, can reduce handling errors and inaccuracies.

These findings, combined with our own, suggest that 
machine learning algorithms hold promise in the assessment 
of coagulation status via paper-based LFAs as a POCT, facili-
tating clinical adoption for anticoagulant management [49], 
informed decision-making for pathology monitoring, particu-
larly crucial in patients with sepsis [50] and cancer [51], and 
reduction of financial burdens for patients. This is crucial 
in communities with limited access to coagulation testing 
machines. Our solution serves as a potentially effective and 
inexpensive alternative for lower socioeconomic regions.

Furthermore, the limited accessibility of more conven-
tional coagulation testing devices, may be addressed through 
mhealth technologies. To this end, we propose a standalone 
mobile-based machine learning platform for the automated 
analysis of images collected by the smartphones of users and 
clinicians (Fig. 5b) which can interpret image data collected 
from experiments involving the use of paper-based LFAs 
(Fig. 5a) in CVD improving classifications of coagulation 
status and provide recommendations in anticoagulant drug 
doses improving patient outcomes (Fig. 5c, Supplementary 
Video 1).

Methods

Paper‑based lateral flow assay (LFA Preparation)

The LFA platform utilised in our experiments was developed  
from TESTSEALABS® RAPID TEST KIT (Dublin, 
Ireland) and OnSite®COVID-19 Ag Self-Test Cassettes 
(CTK Biotech, USA) (Fig. 6), due to their high availability 
and low costs.

Prior to experimentation, the sample pad of the test cas-
sette was removed to reduce the effect of differences in 
the manufacturing process. To ensure consistency in data 
gathering, strips were placed back into the cassette prior 

Fig. 5   Mobile app prototype for RAT repurposed coagulation status assessment. a Diagram of different commercially available paper-based 
LFAs for Flu (ImmunoCard STAT!®, Meridian Bioscience ®) and HIV virus (DETERMINE™HIV-1/2 AG/AB COMBO) detection, pregnancy 
(Pregnosis®) and SARS-CoV-2 diagnosis. b mobile phone image data collection and coagulation status diagnosis using RF classification. c 
interactive analysis of the TESTSEALABS® RAPID TEST KIT cassette with coagulation status and recommended antithrombotic medication 
dosage (Supplementary Video 1)

Fig. 6   Paper-Based LFA Platform SARS-CoV-2 Rapid Antigen Tests 
from TESTSEALABS® RAPID TEST KIT and OnSite®COVID-19 
Ag Self-Test with front (left) and front cover removed (right). Arrow 
indicating the direction of sample diffusion and length of the NC 
membrane for testing
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to testing, providing a level platform to reduce variability. 
During experiments, the blood sample was dispensed onto 
the NC membrane and allowed to be absorbed and diffused 
for 10 min, following which images of the strip were taken 
for further analysis.

Blood collection

All procedures involving blood collection from healthy 
donors were approved by the University of Sydney (USYD) 
Human Research Ethics Committee (HREC, project 
2023/582). Donor blood samples were obtained using a 
19G butterfly needle with written informed consent and by 
trained on-site phlebotomists, and anticoagulated in a 3.8% 
sodium citrate (Sigma Aldrich, USA) syringe as previously 
described [52, 53] in a 1:10 blood to anticoagulant ratio, 
this offers greater control the anticoagulant ratio compared 
to vacutainers, while limiting platelet and coagulation pre-
activation. Blood for experimentation was used within a 4-h 
period following collection as recommended [54].

Whole blood sample preparation

Whole blood (WB) was recalcified with CaCl2 solution 
ranging from 0 and 100 mM final concentrations, in 25 mM 
increments gently mixed and incubated for 2 min to initiate 
the coagulation cascade [17], recalcified samples are only 
used once to ensure consistency in coagulation. 10 µL of 
the recalcified WB was then transferred onto the processed 
TESTSEALABS® RAPID TEST KIT and OnSite®COVID-19 
Ag Self-Test Cassettes NC membrane using a P20 pipette 
with cut tips for minimised shearing (Fig. 1a), immediately 
prior to experimentation. Images and videos of the sample 
diffusion diffused droplet were taken after 10 min and dur-
ing the experimentation process from an iPhone 14 camera, 
and the wicked distance of the RBC and plasma fronts were 
measured for analysis. For antithrombotic dosing experi-
ments, 20U of enoxaparin (Sanofi S,A, France) was added 
to CaCl2 prior to recalcification. To investigate the effects of 
higher enoxaparin doses on wicked distance measurements 
in comparison to uncalcified WB, dose-dependent assays 
using 0-100U enoxaparin in 50 mM CaCl2 solution were 
performed.

Immunofluorescence staining and analysis

Whole blood was stained for platelets with in-house conju-
gated anti-CD41(2 µL mL−1, clone P2) (Beckman Coulter, 
USA) and anti-fibrin (2 µL mL−1, clone 59D8) (Antibody 
System, France) for 30 min at 37 degrees. For diffusive anti-
body characterisation (ABC), similar concentrations were 
dissolved in 10 µL PBS solution, and the strips were run as 
previously described. Fluorescence imaging was conducted 

on an Olympus IX-83 inverted microscope with FV3000 
laser confocal imaging package (Olympus Lifescience, 
Japan). Z-stacks of inverted strip surfaces were imaged using 
a 10 × air objective (NA 0.4) with tile-scan functions. The 
Z-range was defined by boundaries in which “fluorescent 
speckles'' could be seen on the surface at the lowest part (fur-
thermost away from the objective) of the strip. Images were 
processed using Fiji’s image J processing program. Stacks 
were max intensity projected and converted to 8-bit (from 
16) depth to allow for faster processing. Mean fluorescence 
intensity data was gathered using a custom, randomised 
region of interest (ROI) Java script Image J plugin.

Scanning Electron Microscopy (SEM)

SEM was performed using a benchtop Phenom XL scan-
ning electron microscope (Thermofisher Scientific, USA), 
on dried, non-gold coated samples at the USYD Research 
and Prototype Foundry. Images were taken at 7000 × mag-
nification under low vacuum conditions (60 Pa) using a full 
backscatter detector (BSD) configuration with a working dis-
tance of 4 mm at 5 keV, and average pore size was measured 
using ImageJ.

Machine learning classifier

To develop a machine learning classifier to determine the 
level of coagulation in the paper-based LFA platform, 
cropped images of the test strips corresponding to the dif-
ferent levels of CaCl2 recalcification (Fig. 1c) were first con-
verted to greyscale before they were separated and stored in 
collection variables. Using a normalised area, the binned 
pixel intensities of 20 different repeats of each concentration 

Table 2   Comprehensive performance metrics of the random forest 
classifier for coagulation status

This table presents a detailed classification report summarizing the 
precision, recall, and F1-score for each category of coagulation status 
determined by the Random Forest (RF) classifier. Categories include 
Normal, Mild, Moderate, Significant, and Severe coagulation levels. 
The table also showcases the macro average, weighted average, and 
overall accuracy of the classifier, reflecting its robust performance in 
automatically categorizing coagulation states based on the machine 
learning analysis of LFA-based blood sample images

Data Frame

Numerical Label Associated Label Calcium 
Concentra-
tion

1 Normal 0 mM
2 Mild 25 mM
3 Moderate 50 mM
4 Significant 75 mM
5 Severe 100 mM
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were plotted on an image histogram Feature extraction was 
performed subsequently, first by defining specific func-
tions to obtain some first-order statistics, shape and region 
and GLCM texture features. A “for” loop is defined to run 
through the different sets of the stored images in each of 
the 5 collections, and through data augmentation exceed-
ing > 100 images and storing the extracted features into one 
variable through’v-stacking’. A feature data frame was then 
produced using the “pandas'' function containing the extract 
features from the 5 numerical bands representing coagu-
lation severity (Fig. 1b) with associated labels “Normal”, 
“Mild”, “Moderate”, “Significant” and “Severe” correspond-
ing to the different recalcification concentrations in ascend-
ing order (Table 2). The produced data frame was then split 
into training and testing sets based on 0.3 allocation, before 
a random forest learning model (Fig. 7) was trained using 
the training data and associated labels. A separate verifica-
tion dataset was then used to test the model using blinded 
recalcification amounts, and the prediction metrics of preci-
sion, recall and F1-score were displayed in a classification 
report (Table 1). Receiver operating characteristics curves, 
precision-recall curves for the different classes (associated 
labels) and across different sized test sets (0.2, 0.5, 0.7) were 
plotted to assess the quality of the classification model, and 
a confusion matrix outlining the proportions of correct and 
incorrect predictions was produced (Fig. 3d, e, f, g).

Statistical analysis

Data was analysed using an ordinary one-way ANOVA, with 
a post-hoc Holm-Šídák's multiple comparisons test for fluo-
rescent analysis ( * p < 0.05) and plotted using Graphpad’s 
Prism 9 statistical analysis software.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s44258-​024-​00025-3.
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