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Abstract
Ischemic injury causes dynamic damage to the native extracellular matrix (ECM), which plays a key role in tissue homeo-
stasis and regeneration by providing structural support, facilitating force transmission, and transducing key signals to cells. 
The main approach aimed at repairing injury to ischemic tissues is restoration of vascular function. Due to their potential to 
form capillary niches, endothelial cells (ECs) are of greatest interest for vascular regeneration. Integrin binding to ECM is 
crucial for cell anchorage to the surrounding matrix, spreading, migration, and further activation of intracellular signaling 
pathways. In this study, we proposed to establish an in-situ engineering strategy to remodel the ECM at the ischemic site to 
guide EC endogenous binding and establish effective EC/ECM interactions to promote revascularization. We designed and 
constructed a dual-function molecule (LXW7)2-SILY, which is comprised of two functional domains: the first one (LXW7) 
binds to integrin αvβ3 expressed on ECs, and the second one (SILY) binds to collagen. In vitro, we confirmed (LXW7)2-SILY 
improved EC adhesion and survival. After in situ injection, (LXW7)2-SILY showed stable retention at the injured area and 
promoted revascularization, blood perfusion, and tissue regeneration in a mouse hindlimb ischemia model.
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Highlights
• A dual-function peptide developed for in-situ engineering native extracellular matrix. 
• The dual-function peptide specifically anchors endogenous endothelial cells to extracellular matrix.
• The dual-function peptide promotes vascularized tissue regeneration.
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Introduction

Ischemic vascular diseases (IVDs) are a leading health 
concern and the principal cause of morbidity and mortal-
ity throughout the world. IVD is a local manifestation of 
atherosclerosis and results from the blockage or narrowing 
of myocardial and non-myocardial arteries [1]. Generally, 
IVDs mainly include coronary heart disease (CHD) [2], 
carotid artery disease (CAD) [3] and peripheral arterial dis-
ease (PAD) [4, 5]. End organ ischemia is the main patho-
logical feature of IVDs. Impaired blood circulation deprives 
the organs and tissues of oxygen and nutrient supply, which 
leads to pathological conditions such as heart attack, stroke, 
or limb ischemia [6, 7]. Surgical and endovascular interven-
tions are the common therapies for the restoration of blood 
supply to the ischemic tissue, but they only delay the pro-
gression of ischemia and do not induce revascularization [8]. 
Most ischemic patients have recurrent symptoms and peri-
procedural complications [9]. Hence, sufficient revasculari-
zation has been identified as a key challenge for successful 
ischemic injury repair [10, 11].

Extracellular matrix (ECM) is a three-dimensional extra-
cellular network and an important regulator of cell function 
in tissue regeneration [12–14]. The ECM not only provides 
structural support for tissue integrity and stability, but also 
regulates vascular cell growth, migration, differentiation, 
cellular signal transduction and responses [15–18]. In 
normal conditions, the ECM is a well-organized dynamic 
structure that controls tissue homeostasis and regenera-
tion processes through continuous remodeling [19, 20]. 
However, under ischemic injury conditions, the balance of 
ECM structure and function is dynamically damaged. Dys-
regulated ECM is directly associated with the pathogenesis 
of ischemic vascular injury and even exacerbates disease 
progression [21, 22]. Therefore, ECM remodeling plays a 
crucial role for promoting vascularization in preventing and 
treating IVDs [10, 19, 23, 24].

ECM is composed of various components, mainly 
including collagens, proteoglycans, elastin, fibronectin, 
and laminins, which provide cell binding sites for facilitat-
ing signal transduction during tissue regeneration [25–27]. 
Integrins, a family of heterodimeric transmembrane recep-
tors expressed on the cell surface, mediate cell-ECM adhe-
sion through interactions with the ligands in the ECM [28, 
29]. Integrin αvβ3 is highly expressed on the surface of 

endothelial cells (ECs), which contributes to EC adhesion 
and vascularization [30–33]. Previously, we used One-
Bead One-Compound (OBOC) combinatorial technology 
and identified a ligand, LXW7, which has specific and high 
binding affinity to ECs via binding integrin αvβ3 [30]. Our 
previous studies demonstrated that ECM-mimicking scaf-
folds modified with LXW7 can prominently enhance endog-
enous EC recruitment and promote vascularization [34, 35]. 
Additionally, LXW7-functionalized collagen-based scaffolds 
showed the ability to improve EC adhesion, survival, and 
revascularization in the ischemic-mimicking environment 
[36–38]. Thus, LXW7 is an ideal ligand to increase the 
number of integrin binding sites in the ECM and regulate 
endogenous EC functions for improving vascularization. 
Moreover, collagen is the main component of ECM, and 
we have identified a strong and specific collagen-binding 
peptide SILY and used it to modify collagen-based scaffolds 
[15, 37, 39–41]. In this study, we designed and constructed 
a dual-function compound, which is comprised of two func-
tional domains: LXW7 binds to integrin αvβ3 expressed on 
ECs and SILY binds to collagen, to enhance the revasculari-
zation potential of the ECM by increasing the αvβ3 integrin-
mediated EC binding sites within the ECM at the ischemic 
injury area and stimulate the endogenous ECs to promote 
vascularization for ischemic tissue repair (Fig. 1).

Results

Collagen surface treated with (LXW7)2‑SILY 
improved EC attachment

The dual-function molecule (LXW7)2-SILY was synthesized 
by conjugating the integrin ligand LXW7 to the collagen-
binding peptide SILY via click chemistry (Fig. 2A). Elec-
trospray Ionization Mass Spectrometry (ESI–MS) has been 
performed and confirmed the molecular weight and struc-
ture of (LXW7)2-SILY (Fig. 2B), and High-Performance 
Liquid Chromatography (HPLC) has been performed and 
demonstrated the high purity of (LXW7)2-SILY (Fig. 2C). 
Collagen surface treated with (LXW7)2-SILY significantly 
enhanced EC adhesion compared to the surfaces treated with 
PBS or LXW7 (Fig. 3A, B), and no significant difference 
between the PBS group and the LXW7 group, indicating 
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(LXW7)2-SILY treatment could promote EC binding on the 
collagen surface via providing more specific EC binding 
sites.

Collagen surface treated with (LXW7)2‑SILY 
inhibited EC apoptosis and promoted EC survival 
under simulated ischemic environmentin vitro

Collagen surface treated with (LXW7)2-SILY signifi-
cantly decreased caspase 3 expression in ECs under the 
simulated ischemic environment in vitro, compared to 
the PBS and LXW7 groups (Fig. 3C). These results may 
be caused by the additional EC binding sites provided 
by (LXW7)2-SILY treatment. Subsequently, the results 
showed that the (LXW7)2-SILY treated collagen surface 
significantly improved EC survival under the simulated 
ischemic environment in vitro (Fig. 3D), indicating the 
(LXW7)2-SILY treated collagen surface was beneficial 
for EC survival by increasing the number of specific EC 
binding sites.

(LXW7)2‑SILY promoted blood perfusion, tissue 
regeneration, and revascularization in the mouse 
hind limb ischemia model

We evaluated the effects of (LXW7)2-SILY in the mouse 
ischemic hind limb model. By using Laser Doppler perfu-
sion imager (LDPI), we demonstrated the (LXW7)2-SILY 
treatment significantly increased the blood perfusion at dif-
ferent time points after injection (Fig. 4A, B), compared to 
the PBS and LXW7 groups. Also, no significant difference 
was found between the PBS and LXW7 groups (Fig. 4A, B). 
In addition, compared to the PBS and LXW7 groups, micro-
CT imaging confirmed the (LXW7)2-SILY treatment signifi-
cantly improved the vessel volume (Fig. 4C, D), indicating 
the (LXW7)2-SILY possesses the ability to reconstruct the 
blood vessel structure.

Furthermore, the histologic analysis and immunofluo-
rescence staining were performed to determine the tissue 
regeneration and revascularization. Compared to the PBS 
and LXW7 groups, the Hematoxylin and Eosin (H&E) 
staining results showed the (LXW7)2-SILY treatment sig-
nificantly reduced centrally located nuclei (Fig. 5A, B), and 
the Masson Trichrome staining results confirmed (LXW7)2-
SILY treatment significantly decreased the collagen depo-
sition (Fig. 5A, C), demonstrating the SILY conjugation 
improves the regeneration function of LXW7. The CD31 
and α-smooth muscle actin (α-SMA) staining were per-
formed to evaluate the formation of capillaries and arteri-
oles respectively, and the results showed (LXW7)2-SILY 
significantly enhanced the revascularization (Fig. 6A, B, 
and C), compared to PBS and LXW7 groups. These results 
further indicated the (LXW7)2-SILY approach designed in 
this study promotes the regenerative function of LXW7 via 
including a collagen-binding peptide to immobilize LXW7 
on the native ECM.

Discussion

ECM is a non-cellular structure that displays a high number 
of cell binding sites, which support cell–matrix adhesion 
and regulates many cell functions [10, 42, 43]. Cell sur-
face receptors transduce signals into cells from the ECM, 
an action which regulates diverse cellular functions, such as 
attachment, growth, proliferation, migration, survival, dif-
ferentiation, and some vital roles in maintaining cell homeo-
stasis for tissue regeneration [44–47]. As such, ECM plays 
an important role in tissue repair. Hence, current efforts have 
largely been focused on constructing artificial implantable 
biomaterial scaffolds/matrices by mimicking the physical 
properties and biological function of native ECM for tissue 
repair [48–52]. However, to fully mimic the native ECM 

Fig. 1  Schematic diagram of the 
study design. The dual-function 
molecule (LXW7)2-SILY was 
designed to increase the density 
of integrin-mediated EC bind-
ing sites on the injured ECM 
and to regulate endogenous ECs 
for improving revascularization 
in the mouse hindlimb ischemia 
model
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Fig. 2  Synthesis and characterization of (LXW7)2-SILY. A The chemical synthesis approach of (LXW7)2-SILY. B ESI–MS profile. C HPLC 
profile
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is technically challenging because of its dynamic structure 
and function [46, 53, 54]. Additionally, applying the ECM-
mimicking artificial scaffolds often involves surgical proce-
dures which in turn causes more injury to the tissue [26, 43]. 
Native ECM is the best template for cell binding and tissue 
regeneration. If we could fully utilize and optimize the phys-
ical properties and biological functions of the native ECM 
in a minimally invasive manner, it could provide an effective 
approach to modulate the microenvironment and guide tis-
sue repair [55–57]. Therefore, in this study, we attempted to 
develop an innovative approach to engineer the native ECM 
in situ, to modulate endogenous EC binding and function to 
thus improve revascularization for tissue repair.

ECs play critical roles in vascularization and blood per-
fusion, both of which are crucial processes during ischemic 
tissue repair. Here, we engineered and remodeled the native 
ECM to modulate the behaviors of endogenous ECs by 
increasing the density of αvβ3 integrin ligands to improve vas-
cularization and blood perfusion. The ECM motifs that bind 
to cell-surface integrins, play a major role in regulating cell 
adhesion and other cell-ECM interactions [58]. Additionally, 
enhanced cell-ECM engagement through increased density 
of integrin-binding motifs has been shown to stimulate key 
cellular functions [59]. In previous studies we also found that 

increased density of the αvβ3 integrin binding peptide, LXW7, 
stimulates angiogenesis through activation of VEGFR2 [30]. 
Further, in previous studies investigating the application of 
LXW7, we established a way to immobilize LXW7 on the 
collagen, using a collagen-binding peptide SILY and showed 
that the higher density of the integrin-based EC binding sites 
held greater potential for promoting vascularization. In the 
previous study [36] and the current study, we characterized 
(LXW7)2-SILY of varying concentrations using HPLC, indi-
cating (LXW7)2-SILY possesses high solubility. Moreover, 
based on the in vitro and in vivo results obtained in the previ-
ous study [36] and the current study on different cell types and 
animal models, (LXW7)2-SILY demonstrates strong stability 
without noticeable toxicity. The muscle fiber size is another 
important indicator for identifying muscle tissue remodeling. 
Unfortunately, the processing method of muscle tissue for his-
tological studies used in this study showed the muscle fiber are 
shrunk, thus, are not good enough for calculating fiber size. 
To avoid the shrunk of muscle fibers, the frozen isopentane 
method should be used to freeze muscle tissues for histological 
analysis in the future studies [60].

Based on the indispensable role of ECM in cell func-
tion and tissue regeneration, this study utilized molecu-
lar engineering technology to optimize the structure and 

Fig. 3  Attachment, apoptosis, and survival of ECs on collagen surface with (LXW7)2-SILY. A  Images of ECs attached on collagen surfaces 
treated with PBS, LXW7, or (LXW7)2-SILY. The attached ECs were stained with Calcein-AM (green). Scale bar = 50 μm. B Number of ECs 
attached on the different treated surfaces. C Caspase 3 expression in ECs cultured on different treated surfaces with simulated ischemic environ-
ment. D Survival of ECs cultured on the different treated surfaces with simulated ischemic environment. Data were expressed as mean ± stand-
ard deviation: *p < 0.05 (n = 6)
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function of natural ECM, achieving regulation of specific 
endogenous cell behaviors and tissue regeneration. This 
study establishes new proof of concept for in situ ECM 
engineering to modulate the interactions between cells and 
ECM and provides an innovative approach to engineer and 
utilize native ECM to guide cell behaviors and promote 
tissue regeneration.

Conclusion

This study sought to design and construct a dual-function 
compound (LXW7)2-SILY to engineer the native ECM 
and promote revascularization for ischemic injury repair. 
With the abundant expression of collagen across tissues 
and organs and the significance of vascularization in tis-
sue repair and regeneration, (LXW7)2-SILY technology 
holds promise across various tissue regeneration and clini-
cal applications. Moreover, (LXW7)2-SILY could also be 
used in functionalizing collagen-based biomaterials and 
scaffolds for improved vascularization in treating various 
diseases and conditions.

Materials and methods

Cells

We used endothelial colony forming cell (ECFC)-derived 
ECs from our cell banks [30, 34]. ECs were expanded in 
Endothelial Cell Growth Medium-2 (EGM-2, Lonza).

Synthesis and characterization of (LXW7)2‑SILY

Previously, we have demonstrated the dual-function 
molecule (LXW7)2-SILY held the greatest potential to 
improve EC functions [36]. We synthesized (LXW7)2-
SILY through three steps: 1) standard solid phase pep-
tide synthesis (SPPS) of SILY-2N3, 2) SPPS synthesis of 
LXW7-DBCO, 3) DBCO-N3 conjugation by mixing SILY-
2N3 with 2 eq. of LXW7-DBCO. Detailed synthesis was 
described in Fig. 2. (LXW7)2-SILY was characterized by 
using ESI–MS to confirm the molecule weight and struc-
ture and HPLC to validate the purity of the synthesized 
molecule.

Fig. 4  (LXW7)2-SILY promoted blood perfusion and vascular regeneration in the mouse hind limb ischemia model. A  LDPI images and 
(B)  quantification of blood perfusion. C  Micro-CT images and (D)  quantification of regenerated blood vessels. Scale bar = 1  mm. Data are 
expressed as mean ± standard deviation: *p < 0.05, **p < 0.01 (n = 6)
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EC attachment on (LXW7)2‑SILY treated collagen 
surface

24-well plate cell culture wells were incubated with 500 
μL of 100 μg/mL type I collagen (PureCol) at 37℃ for 
1 h. After rinsed with PBS (HyClone), the wells were 
incubated with 500 μL of 40 μM LXW7 or 500 μL of 
20 μM (LXW7)2-SILY for 1 h [36]. The wells were treated 
with 1% BSA (Thermo Fisher Scientific) for 1 h. 5 ×  103 
ECs were incubated in the wells for 5 min and washed 
with PBS. The adhered cells were fixed in 10% formalin 
for 20 min and stained with Calcein AM (Thermo Fisher 
Scientific). Image was generated using a Carl Zeiss Axio 
Observer D1 inverted microscope and quantified using the 
ImageJ software.

EC apoptosis and survival on (LXW7)2‑SILY treated 
collagen surface under simulated ischemic 
environment

The simulated ischemic environment was as described previ-
ously [61, 62]. ECs were seeded in collagen-coated 96-well 
plates treated with PBS, LXW7, or (LXW7)2-SILY under 
the simulated ischemic environment. The cells were cultured 

for 6 h and determined by using a Caspase 3 Assay Kit (Cell 
Signaling Technology). The cells were cultured for 5 days, 
and the MTS Assay (Promega) was performed to determine 
cell survival [63].

Animal study

Female mice (C57BL/6 J, 8-wk-old, Jackson Laboratory) 
were used in this study. Mice were operated with unilateral 
hind limb ischemia surgeries under anesthesia as described 
in our previous study [21]. The experimental groups 
were designed as: (1) PBS (n = 6); (2) LXW7 (n = 6); (3) 
(LXW7)2-SILY (n = 6). In line with our previous research 
[21, 36, 64], we administered 100 μL of 100 μM LXW7 or 
100 μL of 50 μM (LXW7)2-SILY via intramuscular injec-
tion at four distinct locations surrounding the ischemic 
region of the hind limb. Blood perfusion was monitored 
weekly for up to three weeks, using a LDPI system to cal-
culate the perfusion ratio between the ischemic and non-
ischemic limbs. Afterward, the mice were euthanized, and 
a catheter was placed in the left ventricle. The vasculature 
was flushed with PBS containing 100 U/mL of heparin 
sodium, followed by perfusion with 4% paraformaldehyde. 
To enhance contrast, Microfil MV-120 (Flow Tech, Inc.) 

Fig. 5  (LXW7)2-SILY pro-
moted tissue regeneration in 
the mouse hind limb ischemia 
model. A H&E and Masson Tri-
chrome images of tissue treated 
with PBS, LXW7, or (LXW7)2-
SILY. Scale bar = 20 μm in 
H&E images, and 100 μm in 
Masson Trichrome images. 
(LXW7)2-SILY treatment 
significantly decreased (B) 
centrally nucleated myofibers 
and (C) collagen deposition 
in tissue, compare to the PBS 
and LXW7 groups. Data are 
expressed as mean ± standard 
deviation: *p < 0.05 (n = 6)
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was injected into the left ventricle. Finally, the leg muscles 
were harvested and analyzed using micro-CT imaging.

Histologic analysis and immunofluorescence 
staining

The animals were euthanized. The hind limb tissue were 
harvested and immersed in 4% paraformaldehyde at 4 °C 
for 48 h. 6-μm cryosections were prepared and stained 
with H&E (Thermo Fisher Scientific), Masson Trichrome 
(Thermo Fisher Scientific), CD31 antibody (Abcam), or 
α-SMA antibody (Abcam) according to the manufacturer's 
instructions respectively. The The images were captured 
using microscope and analyzed using ImageJ.

Statistical analysis

Prism was used for the statistical analysis. Analysis of vari-
ance (ANOVA) was used to evaluate the significant differ-
ence between different groups, and the post-analysis was 
performed using Holm’s t test. A value of p < 0.05 indicates 
the significant difference.
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