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Abstract
Apoptotic extracellular vesicles (ApoEVs) are membrane-bound vesicles released during apoptosis, crucial for intercellular 
communication by delivering bioactive molecules to recipient cells. These vesicles are increasingly recognized for their 
potential in tumor therapy, immune modulation, and tissue regeneration. Recent studies reveal that ApoEVs play diverse roles 
in the medical fields. In tumor therapy, they enhance targeted drug delivery and antitumor immunity. Immune modulation 
is achieved by presenting antigens to immune cells, fostering specific responses. ApoEVs also aid in tissue regeneration, 
promoting wound healing and tissue repair. Advances in isolation and engineering techniques have improved the purity and 
functionality of ApoEVs, enabling their use as therapeutic delivery platforms. ApoEVs hold significant clinical potential by 
transferring genetic material, proteins, and other bioactive molecules. However, challenges such as standardizing produc-
tion, ensuring safety, and addressing heterogeneity must be overcome. Future research should optimize isolation methods, 
elucidate ApoEV mechanisms, and develop strategies to enhance therapeutic efficacy. ApoEVs offer promising applications 
in cancer treatment, immune regulation, and tissue regeneration. This review summarizes the latest research and potential 
clinical applications of ApoEVs, highlighting their therapeutic promise and the challenges ahead.
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Introduction

Extracellular vesicles (EVs) represent a diverse array of 
membrane vesicles, characterized by their heterogeneous 
origins and the array of soluble intracellular substances they 
encase. Released by virtually all cell types, EVs facilitate 
essential intercellular communication across both healthy 
and diseased states [1–3]. They are traditionally categorized 
based on size, origin, and molecular contents into three pri-
mary types: exosomes (50–100 nm), microvesicles (MVs, 
50–1000 nm), and apoptotic extracellular vesicles (ApoEVs, 
50–5000 nm) [4, 5]. Recent advancements in nanotechno-
logical analysis have led to the discovery of additional EV 
types, including migrasomes, which are specifically released 
during cellular migration to transport unique cytoplasmic 
components [6, 7]. Despite this classification, distinguishing 
among these subpopulations remains a complex challenge 
due to their overlapping sizes and similar structural features 
[8]. Nevertheless, the role of EVs in regulating key physi-
ological functions, such as metabolism, tissue regeneration, 
and immune responses, is indisputably critical [9].

Decades of intensive research have focused on exosomes 
and MVs, exploring their potential in clinical diagnostics and 
therapies for various diseases [10–13]. These vesicles carry 
diverse biological cargoes that have shown promise in treat-
ing immune disorders [14], cancer [15], neurodegenerative 
diseases [16], and infectious diseases [17]. Notably, vesi-
cles derived from stem cells have demonstrated significant 
therapeutic benefits in conditions such as ischemic injuries 
[18], diabetes, and spinal cord injuries, as well as in autoim-
mune diseases [19, 20]. Additionally, engineered vesicles, 
both exosomes and MVs, have been tailored through endog-
enous and exogenous modifications to enhance their target-
ing capabilities and cellular communication. These modi-
fications facilitate specific interactions with recipient cells, 
significantly improving therapeutic efficacy [21]. Despite 
these advancements, several challenges remain, including the 
limited availability of source materials, complex manufac-
turing processes, instability in biological environments, and 
unintended effects on non-target cells, all of which require 
urgent resolution [22].

ApoEVs, a subcategory of EVs, originate from cells under-
going apoptosis, setting them apart from exosomes and MVs. 
Historically, research on ApoEVs has been limited due to 
their rapid clearance in vivo [23]. During apoptosis, the for-
mation of ApoEVs through cellular fragmentation results in 
high variability in their number, composition, and size, which 
complicates the establishment of standardized research meth-
odologies [24]. To date, the characterization of ApoEVs has 
predominantly involved optical and electron microscopy to 

examine their morphological properties during derivation [25]. 
Despite these challenges, the intrinsic properties of ApoEVs 
allow them to encapsulate substantial cargoes and introduce 
extensive modifications in recipient cells, suggesting a potent 
therapeutic potential [26]. Typically, ApoEVs are internalized 
by macrophages, tumor cells, or parenchymal cells through 
phagocytosis after release into the extracellular space [27]. 
The interaction between ApoEVs and recipient cells involves a 
sophisticated recognition system governed by receptor proteins 
or specific biochemical traits, especially within the immune 
system [28]. This precise interaction underscores the potential 
of ApoEVs as natural delivery vehicles and tools for elucidat-
ing disease mechanisms.

As technology advances, our grasp of the biological roles 
and mechanisms of ApoEVs has significantly deepened. 
Enhanced centrifugation techniques and cutting-edge tech-
nologies have refined the isolation and purification processes 
of ApoEVs, leading to streamlined procedures, higher sample 
purity, and improved yields. Such progress has catalyzed fur-
ther research into these entities. Recent studies have employed 
various engineering strategies to modify or mimic ApoEVs, 
significantly improving their diagnostic and therapeutic preci-
sion [29–31]. This review aims to comprehensively introduce 
the critical role of ApoEVs and detail the latest advancements 
in their detection, isolation, and functional modifications. It 
highlights the potential of ApoEVs as a novel delivery system, 
addressing both the ongoing challenges and future research 
directions. This narrative equips researchers with a detailed 
reference for understanding and advancing the development 
and application of ApoEVs.

Biogenesis, release, classification, uptake, 
and metabolism of ApoEVs

Biogenesis and release

EVs are lipid-membrane-enclosed cellular entities released 
through meticulously regulated morphological transforma-
tions. Exosomes are generated from multivesicular body 
exocytosis, while MVs emerge from plasma membrane bud-
ding [32]. In contrast, ApoEVs form during the final stages 
of apoptosis, marked by chromatin and nuclear condensation 
[30]. This process was once thought to be random, but recent 
research has unveiled that the formation of apoptotic bodies 
(ApoBDs) involves several well-orchestrated morphological 
stages [33]. The earliest change, apoptotic membrane bleb-
bing, entails dynamic plasma membrane bleb formation reg-
ulated by a series of protein kinases, notably Rho-associated 
protein kinase 1 (ROCK1) and myosin light chain kinase 
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(MLCK) [34]. Activated by caspase-3-mediated proteolysis, 
ROCK1 phosphorylates the MLC of myosin II, promoting 
membrane blebbing through increased actomyosin contrac-
tion. While the molecular mechanisms governing MLCK 
activation in apoptosis are not fully elucidated, MLCK inhi-
bition is known to hinder membrane blebbing. Furthermore, 
caspase-activated LIM domain kinase 1 (LIMK1) facilitates 
apoptotic membrane blebbing by activating cofilin, an actin-
binding protein [35]. Another essential kinase, p21-activated 
kinase 2 (PAK2), is activated via caspase-3 cleavage and 
subsequent myristoylation, targeting it to the cell membrane 
where it regulates cytoskeletal dynamics and activates the 
stress-associated c-Jun N-terminal kinase (JNK) signaling 
pathway. This pathway supports membrane blebbing during 
apoptosis, with PAK2 interacting with various proteins to 
ensure the orderly release of ApoEVs [36, 37].

After plasma membrane blebbing, certain cells like 
neurons and epithelial cells can produce structures such as 
microtubule spikes, apoptopodia, and beaded apoptopodia. 
These structures aid in the formation of ApoEVs either 
alongside or independent of membrane blebbing. Micro-
tubule spikes, for instance, assist in separating membrane 
blebs into individual ApoEVs by connecting to the spikes 
[38]. In apoptotic THP-1 cells and primary human neutro-
phils, beaded apoptopodia—membrane protrusions can 
generate ApoEVs more efficiently (approximately 10–20 
ApoEVs per strand) than microtubule spikes or apoptopo-
dia, suggesting a unique and rapid formation mechanism 
[39]. Remarkably, beaded apoptopodia and the generation 
of ApoEVs are also seen in genetically altered monocytes 
incapable of forming membrane blebs, indicating that mem-
brane blebbing is not essential for ApoEV formation [40].

However, the detailed mechanisms governing the separa-
tion of individual ApoBDs from the apoptotic cell body are 
not yet fully understood. Shear forces generated by media 
flow or interactions with neighboring phagocytes might 

contribute to this process [27]. Some studies have identified 
caspases as key facilitators in the release of ApoBDs into the 
extracellular space. These enzymes aid in the disintegration 
of cellular structures, promoting ApoBDs formation through 
their proteolytic activity [41]. Additionally, there may be an 
unknown intrinsic abscission force that assists in the sepa-
ration of individual ApoBDs from the cellular protrusion 
[40] (Fig. 1).

Classification of ApoEVs

Initial research indicated that apoptotic cells generate 
ApoBDs with diameters exceeding 1 μm. However, recent 
studies have revealed that apoptotic cells release a variety 
of vesicles of different sizes, collectively referred to as 
apoptotic ApoEVs. As the final products of programmed 
cell death, ApoEVs exhibit diverse morphological and 
biochemical characteristics, which form the basis for their 
classification [42]. Currently, there is no unified standard 
for classifying ApoEVs in the academic community. In 
this review, we summarize and categorize ApoEVs based 
on the latest research from different perspectives. Accord-
ing to their cellular origin, ApoEVs can be classified into 
monocyte-derived ApoEVs, T cell-derived ApoEVs, tumor 
cell-derived ApoEVs, influenza virus-infected cell-derived 
ApoEVs, and stem cell-derived ApoEVs. These ApoEVs 
from various cellular origins play distinct regulatory and 
therapeutic roles in different diseases and physiological pro-
cesses [30, 43–45].

Advancements in detection techniques have identified 
smaller vesicles derived from apoptotic cells [46]. These 
vesicles, along with ApoBDs, have been classified based on 
their sizes into apoptotic MVs (ApoMVs, 200–1000 nm) and 
apoptotic exosomes (ApoExos) [47]. The recent discovery of 
ApoExos highlights the difficulty in distinguishing exosomes 
from healthy or apoptotic cells due to their common marker 

Fig. 1   The formation and release of ApoBDs involve three processes: (I) Plasma membrane blebbing: mediated by caspase-3 protease activation 
of kinases, including Rho-associated coiled-coil containing protein kinase 1 (ROCK1), LIM domain kinase 1 (LIMK1), and p21-activated kinase 
2 (PAK2). (II) Formation of membrane protrusions: the creation of microtubule spikes, beaded apoptopodia, or apoptopodia via caspase-3/7-ac-
tivated pannexin 1 (PANX1) channel and vesicular trafficking. (III) Shear forces or caspase-assisted cleavage to release ApoBDs
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proteins and high heterogeneity [48]. Recent studies have 
shown that different subtypes of apoptotic vesicles, includ-
ing ApoBDs (1–5 μm) and apoptotic small extracellular ves-
icles (ApoSEVs, < 1 μm), derived from bone marrow mes-
enchymal stem cells (BMMSCs), exhibit distinct effects on 
cell proliferation, migration, and differentiation. ApoSEVs 
significantly enhance these cellular processes and promote 
macrophage polarization to specific phenotypes, contrasting 
with the inhibitory effects observed with ApoBDs [49]. This 
finding highlights the importance of discriminating among 
ApoEVs of different sizes in reagent research to derive valid 
conclusions.

Additionally, ApoEVs can be classified into nuclear-
enriched ApoEVs and cytoplasm-enriched ApoEVs based 
on their contents [50]. Nuclear-enriched ApoEVs are abun-
dant in nuclear materials, such as DNA, nuclear proteins, 
and other nucleus-associated components. These ApoEVs 
potentially carry genetic information and functional proteins, 
thereby influencing gene expression and cell cycle control 
[51]. In contrast, cytoplasm-enriched ApoEVs contain cyto-
plasmic proteins, lipids, and organelles, including mitochon-
dria and the endoplasmic reticulum. These vesicles are laden 
with metabolic enzymes, energy molecules, oxidants, repair 
proteins, signaling molecules, and second messengers, all of 
which are crucial for cellular metabolism, energy produc-
tion, and signal transduction [52].

Uptake

During the early stages of apoptosis, dying cells emit vari-
ous ‘find-me’ and ‘eat-me’ signals to facilitate the swift 
recruitment of macrophages or non-professional phago-
cytes [53]. These signals ensure the subsequent recogni-
tion and engulfment by phagocytes. Traditional ‘find-me’ 
signals include soluble factors such as nucleotides (ATP 
and UTP), lysophosphatidylcholine (LPC), sphingosine-
1-phosphate (S1P), and chemokines (CX3CL1, MCP-
1, and IL-18) [52, 54–58]. These molecules create a 
chemotactic gradient that directs phagocytes to the site 
of apoptosis, promoting the efficient and immunologi-
cally silent clearance of dying cells. This process is cru-
cial for preventing secondary necrosis, inflammation, and 
autoimmune responses. Additionally, these mediators 
are involved in ApoEVs-mediated recruitment of phago-
cytes, suggesting that ApoEVs possess similar chemoat-
tractive properties [59]. Notably, different sizes or origins 
of ApoEVs selectively recruit distinct phagocytes both 
in vitro and in vivo. For example, Berda-Haddad et al. 
found that only ApoBDs promote neutrophil migration, 
while ApoMVs and ApoExos do not [60]. Thus, it can be 
concluded that different populations of ApoEVs may play 

more specific roles in the clearance of dying cells, their 
disassembled products, or even the ApoEVs themselves.

During the ‘eat-me’ stage, phagocytes recognize and 
engulf ApoEVs through specific membrane receptors. 
One such receptor is phosphatidylserine (PS), which trans-
locates from the inner leaflet of the plasma membrane to 
the outer leaflet during early apoptosis [61]. Interestingly, 
some cancer cells also express abnormal levels of PS on 
their outer membranes, potentially acting as a transducing 
molecule in cell differentiation and vesicle formation [62]. 
Other potent ‘eat-me’ signals include oxidized forms of PS 
(PSox) [63], calreticulin (CRT) [64], annexin I [65], and 
tubby and tubby-like protein 1 (Tulp1) [66], which enhance 
the recognition and uptake of apoptotic cells by phagocytes. 
Phagocytes recognize PS through various receptors, such as 
Phosphatidylserine receptors (PSRs) on their surface, which 
bind directly to PS and aid in the clearance of ApoEVs 
[67]. Additionally, integrins, particularly αvβ3 and αvβ5, 
as well as TAM receptors (Tyro3, Axl, Mer) [68], can also 
recognize PS, facilitating the recognition and engulfment 
of apoptotic cells. This specific recognition and engulfment 
process between ApoEVs and phagocytes offers a novel 
method for targeted delivery of cargoes to phagocytes for 
therapeutic purposes, especially targeting immune cells 
(Fig. 2).

Metabolism

The phagocytosis of ApoEVs by phagocytes is a critical pro-
cess for the removal of dying cells and the maintenance of 
tissue homeostasis [25]. Once ingested, ApoEVs undergo a 
series of metabolic processes within the phagocyte to ensure 
efficient degradation and prevent the release of potentially 
harmful intracellular components. Inside the cell, ApoEVs 
fuse with the plasma membrane to form phagosomes. This 
process involves actin cytoskeleton rearrangements driven 
by signaling pathways activated by receptors such as inte-
grins and scavenger receptors [69]. Following the forma-
tion of the early phagosome, Rab5 is activated by guanine 
nucleotide exchange factors (GEFs) like Rabex-5, which 
facilitate the exchange of GDP for GTP on Rab5 [70, 71]. 
Activated Rab5 anchors to the phagosomal membrane and 
recruits various effector proteins, including early endosome 
antigen 1 (EEA1) [72]. With Rab5 and EEA1 in place, 
the nascent phagosome is primed for fusion with early 
endosomes. This fusion is mediated by a complex interplay 
of proteins, including SNAREs (soluble NSF attachment 
protein receptors) such as syntaxin 13, syntaxin 7, Vti1b, 
and VAMP8. These SNARE proteins form a complex that 
brings the membranes of the phagosome and early endosome 
into close proximity, allowing them to merge. This fusion 
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also helps lower the pH within the phagosome, creating the 
acidic environment necessary for degradation [73–75].

Within the acidic environment of the phagolysosome, 
lysosomal enzymes become active, including various 
cathepsins (such as cathepsin B, D, and L) and DNase II. 
Cathepsins are proteases that cleave proteins into smaller 
peptides and amino acids, while DNase II degrades DNA, 
preventing intact DNA fragments from escaping and trig-
gering an immune response [76, 77]. The degradation of 
the ApoBD’s contents generates numerous small molecules, 
which the phagocytes can recycle. Amino acids from protein 
degradation are transported out of the phagolysosome and 
used for new protein synthesis or as energy sources [78]. 
Similarly, lipids are broken down by lysosomal lipases and 
can be reused in membrane synthesis or oxidized to pro-
duce energy [79]. Not all degradation products are recycled 
within the phagocytes, some byproducts need to be expelled 
from the cell to maintain intracellular balance. This expul-
sion occurs through exocytosis, where the phagolysosome 
membrane fuses with the plasma membrane, releasing its 
contents into the extracellular space. This process ensures 
that any potentially harmful substances are safely removed 
from the cell [69, 80]. Beyond the physical degradation 
of ApoBDs, phagocytes play a pivotal role in modulating 
the immune response. Engulfment of apoptotic cells often 
leads to the secretion of anti-inflammatory cytokines such as 
TGF-β and IL-10. These cytokines facilitate the resolution 
of inflammation and promote tissue repair, thereby ensur-
ing that the removal of apoptotic cells does not trigger an 
unnecessary immune response. This process, known as 
efferocytosis (the engulfment of apoptotic cells), is crucial 
for maintaining tissue homeostasis and preventing chronic 
inflammation [81, 82].

Isolation of ApoEVs

To further elucidate the functional importance of ApoEVs 
and enhance their modification and application, it is cru-
cial to isolate highly pure ApoEVs. This will improve the 
accuracy of downstream analyses and the effectiveness of 
their applications. Without proper isolation, it is challeng-
ing to draw accurate conclusions about the roles of Apo-
EVs in specific contexts [83]. Continuous advancements in 
instrumentation have gradually optimized the techniques for 
isolating, purifying, and characterizing ApoEVs. Various 
methods can be employed to isolate ApoEVs, but the most 
common techniques include differential centrifugation (with 
or without filtration), density gradient centrifugation, and 
fluorescence-activated cell sorting (FACS). Here, we sum-
marize the advantages and disadvantages of these reported 
techniques for isolating ApoEVs, as well as their respective 
application fields.

Differential centrifugation

Differential centrifugation is the most widely used technique 
for isolating ApoEVs and is generally considered the gold 
standard in this field [69]. This method separates vesicles 
based on their size and density through multiple rounds of 
low-temperature centrifugation, with increasing centrifugal 
force and time in each round. Typically, the process begins 
with a centrifugal force of 300–500 × g to remove resid-
ual cells and debris, followed by 1000–3000 × g to pellet 
ApoBDs [44, 61, 84]. This technique can achieve a purity of 
isolated ApoBDs between 84 and 98%, as confirmed by flow 
cytometry analysis [85]. The primary advantage of differen-
tial centrifugation is its high efficiency, allowing the entire 

Fig. 2   The regulation of 
phagocytosis of apoptotic cells 
involves a myriad of molecules. 
Factors, phagocytic receptors, 
and apoptotic ligands interact 
to coordinate the phagocytosis 
of apoptotic bodies. These 
‘find-me’ and ‘eat-me’ signals 
facilitate the rapid recruitment 
of macrophages or non-
professional phagocytes to the 
site of apoptosis and mediate 
the subsequent recognition and 
engulfment by phagocytes
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process to be completed within an hour, thus minimizing 
the lysis of ApoBDs during separation. However, despite 
being a standard technique, many variations exist in practice. 
For instance, some studies pellet ApoBDs by centrifuging at 
16,000 × g for 30 min after removing whole cells and debris 
at 800 × g [86]. Due to the high centrifugal force, ApoBDs 
and smaller EVs such as MVs may co-sediment, so the 
resulting data should be interpreted with caution. In another 
approach, researchers isolate ApoBDs at 3000 × g for 30 min 
after centrifuging at 800 × g, followed by 16,000 × g to pellet 
ApoSEVs [49]. Since this method relies purely on density to 
separate vesicles, it often results in a heterogeneous popula-
tion of vesicles and cannot isolate ApoBDs from complex 
samples like tissues or biological fluids. Interestingly, some 
studies suggest that different types of centrifuge rotors also 
affect the yield and type of isolated vesicles. Specifically, 
swinging bucket rotors can yield more vesicles, which are 
generally larger than those isolated using fixed-angle rotors 
[87]. However, this conclusion has mainly been discussed in 
the context of exosome isolation, and its impact on ApoEVs 
isolation has yet to be fully explored.

Typically, the diameter of ApoBDs is defined as 1–5 μm 
[40]. To further purify ApoBDs beyond differential cen-
trifugation, researchers have incorporated additional filtra-
tion steps. By passing the supernatant containing ApoBDs 
obtained from the initial centrifugation (300 × g) through 
filters of specific sizes, vesicles within the 1–5 μm range can 
be collected [88]. This quick and straightforward filtration 
step removes larger cell debris and other impurities, enhanc-
ing the purity of isolated ApoBDs. Selecting the appropriate 
pore size is crucial for isolating ApoBDs within a desired 
size range, which is essential for downstream applications. 
However, the key to this method lies in choosing the cor-
rect filter pore size and adjusting the subsequent centrifugal 
force. Using small pore size filters (e.g., 1.2 μm) and high-
speed centrifugation (e.g., 100,000 × g) can result in a mix-
ture of small ApoBDs, MVs, and exosomes [89]. Filtering 
with a single pore size can lead to the loss of ApoBDs that 
are too large or too small, and some ApoBDs or proteins may 
non-specifically adhere to the filter material, reducing yield 
[90]. Additionally, strong filtration may cause artificial frag-
mentation or lysis of cells or vesicles, so filter choice should 
be made cautiously. Although size is a useful criterion for 
characterizing EVs, relying solely on this parameter to sepa-
rate ApoEVs may not always be appropriate. Recent studies 
have shown that some human cell line-derived ApoBDs can 
be as large as 8–10 μm, exceeding the typical 1–5 μm range 
and falling into the category of larger vesicles like large 
oncosomes [51]. Additionally, human T-cell lines undergo-
ing primary necrosis and murine macrophages undergoing 
pyroptosis induced by plant defensin NaD1 or lipopolysac-
charide (LPS) and nigericin also generate vesicles similar in 

size to ApoBDs [91–93]. Therefore, in addition to physical 
characteristics such as size, additional biological character-
istics should be considered to accurately identify and isolate 
ApoBDs (Fig. 3).

Ultracentrifugation

Low-speed (< 20,000 × g) differential centrifugation typi-
cally isolates larger ApoEVs (> 100 nm). Increasing evi-
dence suggests that ApoEVs of different sizes exhibit sig-
nificant differences in their internal cargoes and downstream 
functional regulation [84]. Consequently, researchers are 
focusing on the efficient and accurate isolation of ApoExos. 
An ultracentrifugation method, adapted from exosome isola-
tion techniques, has been proposed for separating ApoExos. 
This method involves an initial centrifugation at 300–500 × g 
for 10 min to remove whole cells and cell debris, followed 
by centrifugation at 2000 × g for 10 min to eliminate larger 
debris. Finally, centrifugation at 120,000 × g for 1–2 h sepa-
rates ApoBDs and smaller EVs [94]. This approach more 
effectively isolates and purifies ApoExos, reducing con-
tamination by impurities. However, completely avoiding 
exosome contamination remains challenging, and ultracen-
trifugation is costly and time-consuming. Extending ultra-
centrifugation time can increase the yield of exosomal RNA 
and protein, but excessively long ultracentrifugation may 
lead to protein aggregation within exosomal particles [95]. 
Additionally, ultracentrifugation can cause co-aggregation 
of proteins and lipids with EVs, interfering with the purity 
of size-based vesicle separation [96, 97]. These phenomena 
have not yet been fully elucidated in the context of ApoEVs 
isolation. Thus, while ultracentrifugation is a viable option 
for separating smaller ApoEVs, careful consideration is 
required to distinguish between exosomes and ApoExos in 
functional studies (Fig. 3).

Density gradient centrifugation

Density gradient centrifugation separates vesicles from con-
taminants based on their buoyant density [98]. This method 
involves creating a continuous density gradient in a centri-
fuge tube and layering the sample on top. The tube is then 
centrifuged at high speed (100,000 × g) overnight (16–18 h) 
to separate the components. Exosomes, with a buoyant den-
sity of 1.13–1.19 g/mL, are typically collected from the 
upper layers of the gradient [99]. This method yields purer 
products compared to ultracentrifugation alone and can be 
used to refine crude vesicle concentrates prepared by ultra-
filtration, ultracentrifugation, or other methods [100]. How-
ever, due to the significant heterogeneity of ApoEVs, there 
is no consensus on their buoyant density. Therefore, this 
separation method is not widely used for isolating ApoEVs. 
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Theoretically, density gradient centrifugation can separate 
ApoEVs of different densities in the same tube, resulting in 
purer ApoEVs compared to differential and ultracentrifuga-
tion. It is important to note that this method cannot sepa-
rate high-density lipoprotein (HDL) particles from EVs in 
plasma and serum samples, making it less suitable for these 
samples [101]. Additionally, configuring the density gradient 
precisely and extracting vesicles from different layers can 
lead to vesicle loss [102] (Fig. 4).

FACS

FACS is another method for isolating ApoEVs, offering 
higher purity than differential centrifugation [44]. The 
purity of FACS-isolated ApoEVs can reach up to 99%, 
meeting the stringent requirements for scientific research and 

applications demanding high purity. This method is based 
on the size of apoptotic cells and ApoEVs, the exposure of 
PS, and the activation of the PANX1 channel [103]. Fluo-
rescently labeled Annexin V binds to exposed PS, and the 
nucleic acid dye TO-PRO-3, selectively absorbed through 
the caspase-activated PANX1 channel, isolates specific cell 
types of ApoEVs, including those from human peripheral 
blood mononuclear cells, human Jurkat T cells, and human 
umbilical vein endothelial cells [50, 51, 103]. FACS can 
qualitatively and quantitatively separate ApoEVs from via-
ble cells, apoptotic cells, and necrotic cells based on size and 
granularity. Pre-sorting centrifugation at 3000 × g for 6 min 
to collect 84% pure ApoEVs helps reduce the number of 
small EVs in the sample [44, 85]. The greatest advantage of 
FACS-based isolation is achieving higher purity of ApoEVs 
(about 99%) and the ability to isolate specific cell types of 

Fig. 3   Approaches for ApoBD isolation. Differential centrifugation is the current gold standard method for isolating ApoEVs from whole 
cells and smaller EVs based on density. Although there are slight variations between methods, differential centrifugation remains the preferred 
approach
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ApoEVs from tissue samples, body fluids, or blood-derived 
samples. However, the speed and efficiency of obtaining 
ApoEVs limit its application range. Therefore, combining 
exosome extraction techniques with other unreported meth-
ods for isolating apoptotic vesicles, such as size exclusion 
chromatography, microfluidic technology, immunoaffinity 
isolation, and laser capture methods, also deserves explora-
tion in future research (Fig. 4).

Characterization of ApoEVs

Although differential centrifugation, filtration, density gra-
dient centrifugation, and FACS are commonly used meth-
ods for isolating ApoEVs [51, 85], confirming successful 
induction of apoptosis and characterizing ApoEVs remain 
critical steps. Without these quality control measures, it is 
difficult to confidently assess the role of ApoEVs in physi-
ological or pathological contexts. In EV-related research, 
fundamental characterization involves detecting EV-specific 
markers. ApoEVs possess numerous markers during for-
mation, including exposed PS [104], DNA [105], nuclear 
proteins [106], CRT [107], calnexin [108], and Bip/GRP78 
[109]. However, many of these markers are not exclu-
sively expressed by ApoEVs. For instance, PS can also be 

detected on other vesicles such as MVs and necrotic bodies 
[110–112]. Additionally, ApoBDs derived from different cell 
types may expose varying levels of PS [51]. Interestingly, 
a recent study demonstrated that ApoBDs do not express 
typical exosome markers but show increased expression 
of GM130 and tubulin. Furthermore, some classic exo-
some markers, such as CD9, CD81, and TSG101, are not 
expressed in ApoExos [113]. This may pave the way for 
new standards in the identification and isolation of Apo-
Exos. Since ApoBDs are generated exclusively by apoptotic 
cells, it is reasonable to assume that apoptosis-related pro-
teins could serve as valuable potential markers for ApoEVs 
[114–116].

In addition, various conventional and advanced tech-
niques are used to quantify and characterize ApoEVs. 
Reported techniques include immunofluorescence [117], 
Western blotting (WB) [118], scanning/transmission elec-
tron microscopy (SEM, TEM) [119], nanoparticle track-
ing analysis (NTA) [117], dynamic light scattering (DLS) 
[120], mass spectrometry [121], flow cytometry [122], 
atomic force microscopy (AFM) [123], and fine-tuned fluid 
systems [119]. In practical research, researchers typically 
combine multiple characterization methods depending on 
the research objectives to analyze ApoEVs, including their 
size, shape, distribution, composition, and communication 

Fig. 4   Approaches for ApoBD isolation. Density Gradient Centrifugation and Fluorescence-activated cell sorting (FACS) can isolate ApoEVs 
with relatively higher purity, with FACS achieving the highest purity. However, both methods are time-consuming



Med-X            (2024) 2:27 	 Page 9 of 33     27 

pathways. With the continuous advancement of science and 
technology, new characterization methods based on elec-
trical, optical, and sensing technologies may continue to 
emerge, aiding in the research of ApoEVs.

Intercellular communication of ApoEVs

It is well known that EVs encapsulate various biologically 
active molecules, such as nucleotides, proteins, and lipids 
[124, 125], which act as critical messages in cell-to-cell 
communication [126]. Similarly, ApoEVs are generated 
from dying cells and contain a variety of cargoes, includ-
ing phospholipid membranes, fragmented organelles, and 
various biofunctional molecules such as membrane-bound or 
intracellular proteins, RNA, and DNA [105, 127]. Compared 
to exosomes and MVs, ApoEVs are primarily enriched with 
DNA, ribosomal RNA, nuclear proteins, and other nuclear-
associated substances, whereas exosomes and MVs are 
mainly rich in cytoplasmic proteins and small RNAs, such 
as siRNA [84, 128]. Moreover, larger ApoBDs have been 
found to contain a greater variety of proteins, lipids, RNA, 

and DNA molecules, potentially exerting broader effects on 
downstream or recipient cells [129, 130]. The type of cell 
and the manner of its disintegration significantly impact the 
variety and quantity of cargoes within ApoEVs [40]. These 
crucial molecular signals play a significant role in commu-
nication with surrounding or even distant cells, serving as 
important ‘transporters’ of signals (Fig. 5).

Intercellular communication through transportation 
of DNA

DNA is driven into apoptotic membrane blebs and subse-
quently into ApoEVs during the initial phase of apoptotic 
cell disassembly by actin-myosin contraction [131, 132]. 
This DNA can be transferred from apoptotic cells to nearby 
cells through a process called ‘apoptotic transformation’ 
[133]. For example, ApoBDs from apoptotic Burkitt lym-
phoma cells can transfer Epstein-Barr virus (EBV) genes, 
such as EBNA1 and EBER, to recipient human fetal fibro-
blasts, macrophages, or bovine aortic endothelial cells, 
where the EBV DNA can integrate into the genomes of these 
cells. These genes can be stably expressed in recipient cells, 

Fig. 5   Intercellular commu-
nication of ApoEVs. ApoEVs 
facilitate the delivery of DNA, 
RNA, proteins, and viruses to 
recipient cells, playing vital 
roles in tumor progression and 
therapy, immunomodulation, 
tissue regeneration, and manag-
ing infections
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promoting malignant transformation and increasing the risk 
of tumor formation. However, it is important to note that 
this study relied on an in vitro co-culture system and did 
not rule out potential factors other than ApoBDs that might 
interfere with the conclusions. Nonetheless, this phenom-
enon suggests that ApoBDs can mediate the transfer of DNA 
between cells [134]. Some puzzling issues remain, such as 
the fact that nuclear DNA is cleaved during apoptosis by 
nucleases like caspase-activated DNase and endonuclease 
G, and the cargoes within ApoBDs would be degraded by 
lysosomes upon entering recipient cells [135–137]. There-
fore, whether DNA packaged into ApoEVs can subsequently 
express functional RNA or proteins should be further inves-
tigated in future studies. Similarly, ApoEVs may face similar 
challenges in the transfer of RNA and proteins (Table 1).

Intercellular communication through transportation 
of RNA

Studies have shown that ApoBDs contain the highest lev-
els of miRNAs compared to other types of EVs [138]. 
Although mRNA is largely degraded during apoptosis, miR-
NAs remain relatively stable [139]. Therefore, miRNAs are 
believed to serve as important functional molecules, regu-
lating a wide range of physiological and pathological states 
in recipient cells. Current research on ApoEVs-mediated 
RNA transfer focuses on stem cells [140–142], immune cells 
[143, 144], and endothelial cells [145], which play crucial 
roles in immune regulation and tissue regeneration [146]. 
For example, studies have shown that ApoBDs produced by 
LPS-stimulated macrophages can transfer miRNA-221/222 
to lung epithelial cells, promoting their proliferation by tar-
geting the CDKN1B-Cyclin D3/CDK4 pathway [144]. Simi-
larly, ApoBDs from endothelial cells transfer miRNA-126 
to vascular cells, increasing the production of chemokine 
(C-X-C motif) ligand 12 (CXCL12) in endothelial cells, 
thereby maintaining plaque stability through the recruit-
ment of progenitor cells [147]. These examples illustrate 
that ApoBDs can transfer various miRNAs to recipient cells, 
thereby affecting their functions.

Interestingly, recent studies have reported significant 
differences in RNA cargoes between different subtypes of 
ApoEVs. Endothelial cell ApoBDs are enriched in riboso-
mal RNA, while ApoExos mainly contain non-ribosomal 
non-coding RNA [148]. Moreover, the functional differences 
in RNA cargoes among different ApoEVs subtypes are also 
notable. For instance, differential genes in ApoSEVs from 
BMMSCs are significantly enriched in AGE-RAGE signal-
ing pathway in diabetic complications, whereas differential 
genes in ApoBDs are enriched in multiple inflammation-
related pathways [49]. Overall, the shuttling of RNAs 

carried by ApoEVs among cells demonstrates the functional 
diversity of ApoEVs (Table 1).

Intercellular communication through transportation 
of proteins

ApoEVs can transfer not only nucleic acid molecules but 
also proteins to recipient cells in various environments [149]. 
These proteins mainly include membrane surface molecules 
and receptors, intracellular signaling factors, functional pro-
teins, and active enzymes. For example, ApoEVs derived 
from pluripotent stem cells can transfer the transcription 
factor SOX2 to skin MSCs. SOX2 can activate the Hippo 
signaling pathway in recipient cells, accelerating skin wound 
healing [150]. Additionally, ApoEVs derived from tumor 
cells can transfer aldehyde dehydrogenase 1A1 (ALDH 1A1) 
to normal tumor cells, promoting metastasis and stemness of 
lung adenocarcinoma [151]. Interestingly, large EVs (LEVs) 
released by apoptotic T cells carry functional catalytic subu-
nits of the proteasome, PSMB9 and PSMB10, which can 
promote the release of LEVs from apoptotic T cells. This 
indicates that proteins loaded into ApoEVs not only function 
within recipient cells but also play crucial roles in regulat-
ing ApoEVs themselves [116]. These protein-transferring 
ApoEVs mainly originate from tumor cells [152], stem cells 
[150, 153], immune cells [45], and some other somatic cells 
[154]. They play multiple regulatory roles in injury repair, 
tissue regeneration, immune regulation, and tumor progres-
sion. It is worth noting that how these proteins are retained 
in ApoEVs during apoptosis, how they are encapsulated 
into ApoEVs, and how they escape lysosomal degradation 
in recipient cells to exert their functions remain unknown 
challenges (Table 1).

Intercellular communication through transportation 
of pathogens

Pathogen invasion frequently leads to apoptosis [155], and 
the pivotal role of ApoEVs in pathogen transmission and 
dissemination is significant [156]. For instance, ApoBDs 
derived from T cells infected with human immunodeficiency 
virus type 1 (HIV-1) can facilitate the transfer of HIV-1 to 
human kidney-2 (HK2) cells, human renal proximal tubule 
epithelial cells (HRPTEC), and primary renal tubular cells 
[157]. Similarly, ApoBDs derived from monocytes infected 
with influenza A virus (IAV) promote viral dissemination 
by carrying IAV mRNA, proteins, and viral particles [45]. 
More importantly, inhibiting the formation of ApoBDs from 
infected monocytes can control the spread of IAV, offer-
ing an exciting direction for post-infection therapy. Due to 
the variety of pathogens, whether all pathogens can spread 
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Table 1   ApoEVs derived from different cell types carry different cargoes and perform various functions

Origin of ApoEVs Cargoes in ApoEVs Recipient cell Function of ApoEVs Ref

Types Name ApoEVs types Types Name

Lymphoid cell BL41 ApoBDs DNA EBNA, EBER Fibroblasts, mono-
cytes, or endothelial 
cells

Changes in growth 
characteristics and 
signaling pathways

 [134]

Immune cell HuT78, PBMC ApoBDs DNA HIV-1 DNA Fibroblasts, DCs Enhanced antigen 
presentation and 
virus transmission

 [161]

Cancer cell Carcinoma cell ApoBDs DNA HPV-16, HPV-18 HPF, Cancer cell Promoting malignant 
tumorigenic trans-
formation

 [163]

Immune cell T Cell ApoBDs DNA Y-chromosome Epithelial cell Transient expression 
of exogenous DNA

 [242]

Cancer cell REF ApoBDs DNA H-rasV12, Human 
c-myc

MEF Promoting malignant 
tumorigenic trans-
formation

 [105]

Stem cell ADSCs ApoBDs miRNA miRNA-21-5p Macrophages Inducing M2 mac-
rophages polariza-
tion

 [140]

Stem cell ADSCs ApoBDs miRNA miRNA-20a-5p THP-1 Balancing mac-
rophage inflamma-
tory polarization

 [141]

Stem cell MSCs ApoEVs miRNA miRNA-210-3p ECs Promote vasculari-
zation and would 
healing

 [142]

Stem cell hBMMSCs ApoEVs miRNA miRNA1324 RAW264.7, 
hBMMSCs

Promoting osteogen-
esis and inhibiting 
osteoclast formation

 [219]

Stem cell mBMMSCs ApoBDs miRNA miRNA-223-3p Pre-OCs Inhibiting osteoclast 
differentiation 
and alveolar bone 
resorption

 [221]

Stem cell hBMMSCs ApoEVs miRNA miRNA-4485-3p MSCs Promoting bone 
regeneration

 [164]

Somatic cells / ApoBDs miRNA miRNA-328-3p BMMSCs Promoting self-
renewal and osteo-/
adipo-genic differ-
entiation of BMSCs

 [88]

Immune cell mBMDMs, 
RAW264.7, THP-1

ApoBDs miRNA miRNA-221, 
miRNA-222

A549 Promoting the pro-
liferation of lung 
epithelial cells

 [144]

Immune cell RAW264.7 ApoEVs miRNA miRNA155 MSCs Inhibiting osteogen-
esis and promoting 
adipogenesis of 
MSCs

 [143]

Immune cell mBMDMs ApoBDs miRNA miRNA-21-5p Macrophages Promoting M2 
polarization of 
macrophages

 [243]

FSCT L-Wnt-3A ApoBDs miRNA miRNA-339-5p Macrophages Inducing M2 mac-
rophages polariza-
tion

 [244]

ECs HUVECs ApoBDs miRNA miRNA-126 HUVECs, SMCs, 
mAECs

Promoting the pro-
duction of CXCL12

 [147]

ECs HUVECs ApoExos mRNA PCSK5 HUVECs Increasing PCSK5 
protein expression

 [145]
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Table 1   (continued)

Origin of ApoEVs Cargoes in ApoEVs Recipient cell Function of ApoEVs Ref

Types Name ApoEVs types Types Name

Stem cell rBMMSCs ApoEVs mRNA Multiple mRNA BMSCs ApoSEVs and 
ApoBDs exhibit 
opposing roles in 
stem cell prolifera-
tion, migration and 
differentiation

 [49]

Cancer cell GBM ApoEVs Protein RBM11 GBM Promoting the resist-
ance and aggressive 
migratory pheno-
type of GBM

 [152]

Cancer cell BEAS2b, LUAD ApoEVs Protein ALDH1A1 LUAD Activating the NF-κB 
signaling pathway

 [151]

Stem cell hDPSC ApoEVs Protein TUFM HUVECS Promoting angiogen-
esis

 [224]

Stem cell MSCs ApoEVs Protein DNA repair proteins BMMSCs Repairing DNA dam-
age and suppressing

premature cellular 
senescence

 [222]

Stem cell hESCs ApoEVs Protein SOX2 mSMSCs Promoting SMSC 
proliferation and 
migration

 [150]

Stem cell SHED ApoEVs Protein PD1 HUVECs Modulate the ECs 
glycolysis

 [245]

Stem cell mBMMSCs ApoEVs Protein Rab7 rBMMSCs Restoring autolys-
osomes formation

 [153]

Stem cell Epithelial stem cell ApoBDs Protein Wnt8a Basal stem cells Activating Wnt 
signaling

 [162]

ECs HUVECs, mECs ApoExos Protein 20S proteasome B cell Inducing autoanti-
body production

 [113]

Blood cell hRBC ApoEVs Protein CA1 hBMMSCs Promoting osteogen-
esis of hBMSCs

 [154]

HHCs KG1a ApoBDs Protein IGF2BP3 SKM1, ML-1 Promoting Ara-C 
resistant of HHCs

 [246]

Somatic cells / ApoBDs Protein RNF146 BMMSCs Promoting self-
renewal and osteo-/
adipo-genic differ-
entiation of BMSCs

 [88]

Osteoclast mOCs ApoBDs Protein RANKL MC3T3-E1 Promoting osteogen-
esis

 [247]

Hepatocyte RLW ApoBDs Virus JFH1 hMDMs, LX2 cells Activating inflam-
masomes

 [165]

Immune cell THP1 ApoBDs Virus IAV A549 Promoting viral 
propagation and 
antiviral immune 
response

 [45]

Immune cell CD4 T cells ApoEVs Virus HIV HK2s, HRPTECs Transfering HIV-1 
into tubular cells

 [157]

REF Rat embryonic fibroblasts, MEF Mouse embryonic fibroblasts, HPF Human primary fibroblasts, HUVECs Human umbilical vein endothe-
lial cells, ADSCs Adipose derived mesenchymal stem cells, FSCT Fibroblast-Like Cells, ECs Endothelial cells, Pre-OCs Pre-osteoclasts, SMCs 
Smooth muscle cells, mAECs Mouse aortic endothelial cells, GBM Glioblastoma, hDPSC Human deciduous pulp stem cell, TUFM Transfer-
ring mitochondrial Tu translation elongation factor, hESCs Human embryonic stem cells, mSMSCs Mouse skin mesenchymal stem cells, SHED 
Stem cells from human exfoliated deciduous teeth, PD1 Programmed cell death 1, Rab7 Ras-related protein 7, mECs Murine aortic endothelial 
cells, hRBC Human red blood cells, CA1 Carbonic anhydrase 1, HHCs Human hematopoietic cell lines, IGF2BP3 Insulin-like growth factor 2 
mRNA-binding protein 3, Ara-C Cytosine arabinoside, mOCs Mature osteoclasts, RLW Huh7.5CYP2E1 cells, hMDMs Human monocyte-derived 
macrophages
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via ApoEVs is a question that requires extensive research. 
Furthermore, the selectivity of ApoEVs for recipient cells 
following infection and the functional impact of ApoEVs 
within recipient cells need additional investigation (Table 1).

Each day, over 50 billion cells must undergo apoptosis in 
the human body to maintain tissue homeostasis [158]. Apo-
EVs are certainly not just ‘garbage bags’ from dying cells 
but significant information carriers that need to be cleared 
[159]. They can also serve as platforms, like other vesicles, 
to target and deliver molecules to recipient cells, altering 
their functions [160]. These recipient cells primarily include 
immune cells [140, 161], endothelial cells [145, 147], tumor 
cells [152], and stem cells [88, 162]. Therefore, ApoEVs 
can be preferred carriers for functional intervention in these 
cells. Utilizing various natural and engineered ApoEVs can 
regulate downstream target cells, serving as an effective 
strategy for disease diagnosis and therapy.

Applications of ApoEVs

Although many mechanisms by which ApoEVs interact 
with various types of recipient cells and exert their func-
tions remain unknown, increasing evidence suggests that 
ApoEVs can trigger multiple responses in recipient cells, 
regulating diverse biological functions [24]. Existing reports 
indicate that these intervened biological processes primar-
ily involve immunomodulation [140], tumorigenesis and 
progression [105, 163], as well as tissue regeneration and 
repair [142, 164]. In the future, ApoEVs may attract atten-
tion and be reported in more fields. It is noteworthy that 
the broad biological functions of ApoEVs not only maintain 
homeostasis but also have the potential to disrupt it [165]. 
Additionally, the compositional heterogeneity of ApoEVs, 
their different sources, and varying conditions of formation 
have not been carefully distinguished in current research. 
Their clinical applications in diagnosis and therapy require 
extensive research support. In this section, we will system-
atically review and analyze the intervention roles of ApoEVs 
in some important biological functions and the application 
of engineered ApoEV-based carriers in disease treatment, 
distinguishing their advantages and disadvantages to lay the 
foundation for subsequent research.

Applications based on non‑engineered ApoEVs

Similar to exosomes, ApoEVs are critical signal carriers for 
intercellular communication. ApoEVs can deliver essential 
biomolecules such as DNA, RNA, and proteins to recipient 
cells, along with intact organelles including mitochondria, 
ribosomes, and endoplasmic reticulum, as well as notable 

nuclear fragments [166]. Derived from the sequential disas-
sembly of cells under precise molecular regulation, ApoEVs 
are far from being mere ‘garbage bags.’ Instead, they act as 
‘engineers’ in cell function regulation, homeostasis main-
tenance, and disease progression (Fig. 6) (Table 2) [160].

Diagnosis

As products of dying cells, ApoEVs and their cargoes serve 
as critical evidence for assessing cell status and disease 
progression [167]. Currently, the application of ApoEVs as 
diagnostic and prognostic indicators primarily focuses on 
tumors [168–171], infection [172], autoimmune diseases 
[173–175], nervous system injuries, neurodegenerative dis-
eases [176], and cardiovascular diseases [177]. Studies have 
reported that ApoBDs are enriched in prostatic adenocar-
cinoma tissues and present in 13% of high-grade prostatic 
intraepithelial neoplasia but are rarely seen in benign mim-
ics’ needle biopsies. This phenomenon provides histological 
diagnostic evidence for challenging cases of prostate adeno-
carcinoma [168]. Further studies have found that ApoBDs 
derived from prostate cancer carry characteristic genomic 
DNA (gDNA), including MLH1, PTEN, and TP53 genes, 
which can serve as potential markers for diagnosing prostate 
cancer and assessing tumor progression [169]. Additionally, 
the drug sensitivity and toxicity of pancreatic tumor cells can 
be assessed using high-throughput single-particle impedance 
cytometry on ApoBDs [170]. Moreover, studies have shown 
that ApoBDs are significant in diagnosing celiac disease, 
with a marked increase in Crypt ApoBDs in small intestinal 
tissues highly correlated with disease severity [173, 174]. 
Other researchers have found that circulating ApoBDs can 
be biomarkers of apoptosis in ischemic stroke and neurode-
generative disease patients. High-purity and intact ApoBDs 
isolated by combining centrifugation and flow cytometry can 
help clinicians detect cell damage and disease activity in cer-
ebrovascular and neurodegenerative disease patients [176]. 
Williams et al. further revealed that ApoEVs produced by 
human cells under varying pathological conditions, such 
as cholesterol accumulation or endotoxin exposure, harbor 
distinct molecular subsets, influencing endothelial function 
through multiple, well-characterized molecular pathways. 
This suggests that ApoEVs could serve as both novel bio-
markers and mediators of endothelial dysfunction [177]. 
However, ApoEVs cannot yet be used as standalone diagnos-
tic indicators for diseases, as their specificity and accuracy 
need further observation. It is anticipated that as research 
on ApoEVs deepens, ApoEVs themselves and their cargoes 
may become a minimally invasive and accurate diagnostic 
tool, playing an irreplaceable role in clinical disease diag-
nosis and prognosis.
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Immunomodulation

ApoEVs play a crucial role in immune modulation by serv-
ing as vaccines that present antigens to antigen-presenting 
cells (APCs), thus activating immune responses [156, 178]. 
ApoEVs provide unique therapeutic strategies as efficient 
vaccines for various diseases, including tumors [179–182], 
infections [183–186], and autoimmune disorders [187]. For 
example, dendritic cells (DCs) pulsed with allogeneic leu-
kemic ApoBDs have been used as vaccines to treat B-cell 
chronic lymphocytic leukemia (B-CLL), progressing to 
clinical trials [180]. Schaible et al. demonstrated that mac-
rophages infected with intracellular bacteria (such as Myco-
bacterium tuberculosis) can release ApoBDs to transfer 

antigens to DCs, subsequently activating CD8 T cells and 
promoting specific immunity. This study provides a new ref-
erence point for vaccine design in antibacterial immunity 
[183]. Notably, in studies of systemic lupus erythematosus 
(SLE), DCs have shown a stronger ability to phagocytose 
apoptotic blebs compared to ApoBDs, mediating more effec-
tive antigen presentation and autoimmune responses. This 
suggests that the type of ApoEVs should be a critical factor 
in vaccine design for different diseases [187]. Additionally, 
ApoBDs from DCs carrying HIV-1 can serve as vaccines to 
activate T cells for the intervention and treatment of HIV-1 
infection [186]. Thus, ApoEVs can act as natural antigen 
carriers, delivering various antigens and possessing specific 

Fig. 6   Applications of ApoEVs. There is a broad scope of research and application for natural and engineered ApoEVs in areas such as immune 
regulation, tumor therapy, and tissue regeneration
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Table 2   Applications based on natural ApoEVs

Origin of ApoEVs Recipient cell Applications Functions Ref

Types Name ApoEVs types Types Diseases

Immune cell Alveolar mac-
rophage

ApoBDs / Diagnosis Lung carcinoma Cancer diagnosis  [171]

Cancer cell Prostate cancer ApoBDs / Diagnosis Prostate adenocar-
cinoma

Cancer diagnosis  [168]

Cancer cell Prostate cancer ApoBDs Diagnosis Prostate cancer Cancer diagnosis 
and prognostics

 [169]

Cancer cell Pancreatic tumor ApoBDs / Diagnosis PDAC Assess drug 
sensitivity and 
toxicity

 [170]

Blood / ApoBDs / Diagnosis Pemphigus Vul-
garis

Assessing disease 
progression

 [172]

Nerve cell Cerebellar granule 
cells

ApoBDs / Diagnosis CJD CJD diagnosis  [175]

/ / ApoBDs / Diagnosis PCD Predicting the 
potential for 
continued villous 
atrophy follow-
ing GFD

 [174]

/ / ApoBDs / Diagnosis CD CD diagnosis  [173]
/ / ApoBDs / Diagnosis GVHD GVHD diagnosis  [248]
/ / ApoBDs / Diagnosis Neurological 

disorder
Prognosis and 

monitoring of 
cerebrovascular 
and neurodegen-
erative disease 
activities

 [176]

Immune cell DC ApoEVs T cells Immunomodula-
tion

AML DC-vaccines  [179]

Immune cell Macrophage ApoEVs CD8 T cell Immunomodula-
tion

MTI DC-vaccines  [183]

Immune cell Macrophage ApoEVs DC Immunomodula-
tion

MTI DC-vaccines  [184]

Immune cell Macrophage ApoEVs DC Immunomodula-
tion

CL DC-vaccines  [181]

Immune cell Macrophage ApoEVs DC Immunomodula-
tion

MTI DC-vaccines  [185]

Immune cell DC ApoBDs T cells Immunomodula-
tion

HIV 1 infection DC-vaccines  [186]

Leukemic cell Leukemic B cells ApoBDs DC Immunomodula-
tion

B-CLL DC-vaccines  [180]

Leukemic cell HL60 ApoEVs DC Immunomodula-
tion

AML DC-vaccines  [182]

Leukemic cell 32Dcl3 ApoEVs DC Immunomodula-
tion

SLE DC-vaccines  [187]

Stem cell AMSCs ApoBDs Macrophages Immunomodula-
tion

Skin wounds Promoting M2 
polarization of 
macrophages

 [140]

Stem cell AMSCs ApoBDs Macrophages Immunomodula-
tion

Diabetic wounds Promoting M2 
polarization of 
macrophages

 [141]

Stem cell mBMMSCs ApoEVs Macrophages Immunomodula-
tion

Periodontitis Inhibiting pro-
inflammatory 
phenotypes

 [249]

Stem cell mBMMSCs ApoEVs T cells Immunomodula-
tion

Lupus, arthritis Ameliorating of 
inflammation

 [192]
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Table 2   (continued)

Origin of ApoEVs Recipient cell Applications Functions Ref

Types Name ApoEVs types Types Diseases

Stem cell hBMMSCs ApoEVs Macrophages Immunomodula-
tion

Type 2 diabetes Promoting M2 
polarization of 
macrophages

 [117]

Immune cell Macrophage ApoBDs Macrophages Immunomodula-
tion

OA Promoting M2 
polarization of 
macrophages

 [243]

Immune cell Macrophage ApoEVs Macrophages Immunomodula-
tion

RA Promoting M2 
polarization of 
macrophages

 [193]

Immune cell Murine thymo-
cytes

ApoEVs Macrophages Immunomodula-
tion

Colitis Promoting anti-
inflammatory 
phenotype

 [190]

ECs HUVECs ApoExos ECs Immunomodula-
tion

Endothelial injury Promoting NF-κB 
activation

 [189]

Stem cell mBMMSCs ApoExos MMC Cancer therapy MM Inducing MMC 
apoptosis

 [208]

Cancer cell EG7 ApoBDs T cells Cancer therapy T lymphoma Inhibiting CTL 
responses and 
antitumor immu-
nity

 [207]

Cancer cell PROb ApoBDs DCs Cancer therapy Colon cancer Activating CTL 
responses

 [204]

Cancer cell LUAD cell ApoEVs A549 Cancer therapy LUAD Promoting LUAD 
metastasis and 
stemness

 [151]

Cancer cell HL60 ApoEVs DCs Cancer therapy Leukemia Inducing tumor-
directed immu-
nity

 [250]

Cancer cell C6 ApoEVs DCs Cancer therapy GMB Activating CTL 
responses

 [206]

Cancer cell GBM cells ApoEVs GBM cells Cancer therapy GMB Promoting therapy 
resistance and 
aggressive 
migratory phe-
notype

 [152]

Cancer cell Melanoma cells ApoEVs DCs Cancer therapy Melanoma Activating CTL 
responses

 [251]

Cancer cell Lymphoma cells ApoEVs Macrophages Cancer therapy Lymphoma Inhibiting CTL 
responses

 [212]

Stem cell mBMMSCs ApoEVs MSCs Regeneration and 
healing

Skin and hair 
disorders

Promoting wound 
healing and hair 
growth

 [218]

Stem cell hESCs ApoEVs MSCs Regeneration and 
healing

Skin wound Promoting skin 
wound healing

 [150]

Stem cell MSCs ApoEVs ECs Regeneration and 
healing

Skin wound Promoting skin 
wound healing

 [142]

Stem cell BMMSCs ApoEVs stem cells Regeneration and 
healing

Skin wound Promoting skin 
wound healing

 [49]

Tissue Adipose tissue ApoEVs Fibroblasts, ECs Regeneration and 
healing

Skin wound Promoting skin 
wound healing

 [252]

ECs HUVECss ApoEVs ECs Regeneration and 
healing

Skin wound Enhancing Angio-
genesis

 [253]

Stem cell hDPSCs ApoEVs ECs Regeneration and 
healing

Ischemic-hypoxic 
injury

Enhancing Angio-
genesis

 [224]



Med-X            (2024) 2:27 	 Page 17 of 33     27 

cell-targeting capabilities. However, further improvements in 
vaccine storage stability and production purity are needed.

In addition to serving as novel vaccines, ApoEVs are also 
involved in regulating the balance of inflammation. ApoEVs 
express multiple “Eat-me” signals on their surface, which 
are recognized by phagocytes to mediate the endocytosis of 
ApoEVs [60]. The entry and digestion of ApoEVs within 
phagocytes is a clearance pathway for ApoEVs in the body, 
producing anti-inflammatory responses and suppressing 
tissue inflammation [188]. Currently, inflammation-related 

diseases involving ApoEVs include cardiovascular diseases 
[189], digestive system diseases [190], metabolic diseases 
[117, 141], and autoimmune diseases [191, 192]. For exam-
ple, adipose-derived mesenchymal stem cell ApoBDs can 
promote macrophage M2 polarization and accelerate skin 
injury repair [140]. ApoEVs from macrophages and osteo-
clasts can inhibit joint inflammation and repair cartilage 
damage and bone erosion in rheumatoid arthritis (RA), 
showing promising prospects in RA treatment [193]. Moreo-
ver, BMMSC ApoEVs can reprogram macrophages in the 

Table 2   (continued)

Origin of ApoEVs Recipient cell Applications Functions Ref

Types Name ApoEVs types Types Diseases

Stem cell hDPSCs ApoEVs hBMMSCs Regeneration and 
healing

Osteoporosis Promoting bone 
formation

 [254]

Stem cell hBMMSCs ApoEVs MSCs Regeneration and 
healing

Osteoporosis Promoting osteo-
genesis

 [219]

Stem cell hBMMSCs ApoEVs MSCs Regeneration and 
healing

Osteoporosis Promoting osteo-
genesis

 [164]

Stem cell hBMMSCs ApoEVs MSCs Regeneration and 
healing

Osteoporosis Promoting osteo-
genesis

 [255]

Stem cell mBMMSCs ApoEVs MSCs Regeneration and 
healing

Bone loss Enhancing bone 
mass

 [153]

Stem cell rBMMSCs ApoEVs ECs Regeneration and 
healing

Defect fabrication Promoting osteo-
genesis

 [256]

Bone cell Osteoclast ApoBDs MC3T3-E1 Regeneration and 
healing

/ Promoting osteo-
genesis

 [247]

Immune cell RAW264.7 ApoEVs MSCs Regeneration and 
healing

/ Promoting osteo-
genesis

 [143]

Stem cell mBMMSCs ApoEVs C2C12 Regeneration and 
healing

TA injury Promoting muscle 
regeneration

 [220]

Stem cell mBMMSCs ApoEVs mBMMSCs Regeneration and 
healing

Irradiation-induced 
injury

Ameliorating 
irradiation-
induced DNA

damage

 [222]

Stem cell hUMSCs ApoEVs HEI-OC1 Regeneration and 
healing

NIHL Attenuating NIHL  [257]

Stem cell SHED ApoEVs ECs Regeneration and 
healing

Ischemic Retin-
opathy

Regulate the 
angiogenic acti-
vation

 [245]

CTCs Tendon Cells ApoBDs Tendon Cells, 
BMMSCs

Regeneration and 
healing

Tendon injury Promoting cell 
proliferation and 
migration

 [223]

Immune cell Macrophages ApoBDs Epithelial cells Regeneration and 
healing

Pneumonia Promoting 
proliferation of 
epithelial cells

 [144]

Blood cell hRBC ApoEVs hBMMSCs Regeneration and 
healing

Calvarial defects Enhancing bone 
regeneration

 [154]

ECs HUVECs ApoBDs ECs Regeneration and 
healing

Atherosclerosis Limiting athero-
sclerosis

 [147]

GFD Gluten free diet, PDAC Pancreatic ductal adenocarcinoma, CJD Creutzfeldt-Jakob disease, PCD Pediatric celiac disease, CD Celiac dis-
ease, GCHD Graft versus host disease, AML Acute myeloid leukemia, CL Cutaneous leishmaniasis, MTI Mycobacterium tuberculosis infection, 
32Dcl3 Murine 32D clone 3 (32Dcl3) cells (H-2  k), AMSCs Adipose mesenchymal stem cells, CTL Cytotoxic T lymphocytes, LUAD Lung 
adenocarcinoma, GMB Glioblastoma, hDPSCs Human deciduous pulp stem cells, hUMSCs Human umbilical mesenchymal stem cells, NIHL 
Noise‑induced hearing loss, CTCs Connective tissue cells
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liver of type 2 diabetes, promoting their transformation to 
an anti-inflammatory phenotype [117]. Mechanistically, 
the anti-inflammatory effects of ApoEVs can be achieved 
by delivering cargoes to recipient cells or through ligand-
receptor binding [140, 192].

Additionally, ApoEVs have been found to carry endog-
enous danger signals that trigger detrimental immune and 
thrombotic processes. These vesicles, originating from 
apoptotic monocytes/macrophages, are loaded with oxidized 
membrane phospholipids, which activate endothelial cells 
and induce the low-density lipoprotein receptor-1(LOX-
1)-dependent expression of intercellular adhesion mole-
cule-1 (ICAM-1), subsequently attracting leukocytes to the 
vasculature [194]. Importantly, these ApoEVs expose PS on 
their membrane and also contain tissue factors (TFs), indi-
cating that they could represent novel mediators of athero-
thrombosis [195, 196]. Interestingly, a recent study showed 
that macrophage phagocytosis of different types of apop-
totic cells can produce different phenotypic transcriptome 
changes, with receptors on macrophage surfaces playing a 
crucial role in macrophage functional differentiation. Alter-
ing the number of apoptotic cells given to macrophages does 
not lead to the acquisition of a tissue remodeling phenotype. 
This suggests that the identity of perceived apoptotic cells, 
rather than their quantity, is key in phagocyte remodeling 
[197].

Autoimmune diseases arise when structural changes 
or biochemical modifications in self-components lead to 
epitope spreading, revealing cryptic epitopes and forming 
“altered self” molecules. This process breaks immune tol-
erance and triggers autoimmunity [198]. In autoimmune 
diseases, excessive apoptosis and impaired clearance of 
apoptotic cells disrupt immune tolerance, leading to autoim-
munity [199]. During apoptosis, positively charged autoan-
tigens bind to the negatively charged plasma membrane PS 
and are released via ApoEVs during membrane budding, 
establishing a molecular foundation for antigen presenta-
tion [198]. In conditions such as SLE and RA, defective 
clearance of ApoBDs results in cellular debris accumula-
tion, exposing self-antigens and activating autoreactive B 
and T lymphocytes, perpetuating autoimmune pathology 
[200]. The accumulation of ApoBDs, enriched with post-
translationally modified or oxidized proteins, nucleic acids, 
and lipids, exacerbates their immunogenicity in autoimmune 
diseases [201]. This alteration enhances recognition by pat-
tern recognition receptors, particularly Toll-like receptors 
(TLRs), amplifying the autoimmune response. The balance 
between apoptotic body clearance and immune tolerance 
is delicate, and disruption in this process triggers a cas-
cade of autoimmune events. Understanding the molecular 
mechanisms governing apoptotic body formation, modifi-
cation, and clearance is essential for grasping autoimmune 

pathology. In summary, the upstream and downstream 
relationship between ApoEVs and phagocytes, especially 
immune cells, as well as the functional molecules carried by 
ApoEVs themselves, hold great potential for immune regula-
tion and molecular delivery in various diseases.

Cancer therapy

Apoptotic tumors can communicate with adjacent cells 
through ApoEVs [202]. Although the structural charac-
teristics, contents, and functional properties of ApoEVs 
in cancer remain unclear, growing evidence suggests that 
ApoEVs play multifaceted roles in mediating tumor immu-
nity, transformation, and metastasis [46, 203]. During apop-
tosis, tumor cells can present tumor antigens to APCs via 
ApoEVs [204]. These antigens are then captured by APCs, 
which activate CD4 helper and cytotoxic lymphocytes to 
drive immune responses, promoting tumor regression [166, 
205]. For example, subcutaneous injection of irradiated C6 
cell-derived MVs increases the infiltration of helper T cells, 
cytotoxic T cells, and regulatory T cells into tumors, reduc-
ing the size of glioblastomas [206]. Contradictorily, there are 
differing conclusions about whether apoptotic cell vesicles 
stimulate or suppress immunity in tumors. Tumor-derived 
ApoEVs can downregulate the immune-stimulatory func-
tion of antigen-specific DCs, and evidence suggests that 
this immunosuppressive effect is mediated by transform-
ing growth factor-β1 (TGF-β1) [207]. Therefore, the role 
of ApoEVs in tumor immunity may need to be carefully 
differentiated according to different tumor environments and 
types.

Apart from immune response intervention, Kou et al. 
found that ApoEVs from MSCs can induce multiple mye-
loma (MM) cell apoptosis and inhibit MM cell growth by 
binding FasL to Fas on the tumor cell membrane [208]. Apo-
EVs derived from lung adenocarcinoma cells can deliver 
ALDH 1A1 to normal lung adenocarcinoma cells, activat-
ing the NF-κB signaling pathway by increasing aldehyde 
dehydrogenase enzyme activity in recipient tumor cells, thus 
promoting metastasis, self-renewal, and chemoresistance 
[151]. These findings underscore the diversity of functions 
and mechanisms of ApoEVs in tumors.

The process of tumor metastasis involves the migra-
tion of tumor cells from the primary site to draining lymph 
nodes, eventually spreading sequentially from the nearest 
to the furthest lymph nodes [209]. In the subcapsular sinus 
of the lymph node, macrophages are the first to encounter 
antigens and play a role in presenting captured antigens to 
APCs, including B cells [210]. CD169 + macrophages are 
crucial for tumor tolerance and immunogenic responses. 
By immunizing with apoptotic tumor cells, CD169 + mac-
rophages cross-present tumor antigens to CD8 + T cells, 
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mediating cytotoxic anti-cancer immune responses [211]. 
However, a study showed that CD169 − / − mice had signifi-
cantly enhanced in vivo cytotoxic T lymphocyte responses 
to antigen-pulsed ApoVs, indicating a suppressive role for 
CD169 + macrophages in ApoV-associated antigen presenta-
tion [212]. Therefore, we must re-examine the direct impact 
of CD169-captured EVs (“seeds”) and CD169 (“soil” recep-
tors) on tumor metastasis. Despite the conflicting conclu-
sions, the unique immune properties and carrier character-
istics of ApoEVs still offer valuable tools for future cancer 
therapy. This necessitates a deeper understanding of the 
complexity of interactions between ApoEVs and the immune 
system, as well as recipient cells, to further elucidate the 
relationship between ApoEVs and tumor progression.

Regeneration and healing

ApoEVs derived from stem cells, endothelial cells, and 
immune cells have been shown to directly and indirectly 
promote injury repair and regeneration [213–217]. For 
instance, treatment with exogenous MSC-derived ApoEVs 
can activate the proliferation and differentiation of skin and 
hair follicle mesenchymal stem cells via the Wnt/β-catenin 
pathway, accelerating wound healing [218]. Liu et al. found 
that MSC-derived ApoEVs can promote osteogenesis and 
inhibit osteoclast formation [219]. Additionally, MSC-Apo-
EVs have been shown to promote muscle regeneration and 
increase the proportion of multinucleated cells in cardio-
toxin-induced tibialis anterior (TA) injury [220]. The mech-
anisms through which ApoEVs promote tissue regeneration 
and repair are understood to revolve around their ability to 
deliver DNA, RNA, and proteins that directly enhance the 
proliferation and functional remodeling of recipient cells 
[143, 221, 222].

It is noteworthy that ApoEVs’ reparative effects can also 
be achieved through indirect actions on recipient cells. For 
example, endothelial cell-derived ApoEVs can enhance 
vascular cells’ production of CXCL12, which promotes the 
incorporation of Sca-1 + progenitor cells and confers fea-
tures of plaque stability [147]. Beyond bone and skin injury 
repair, ApoEVs have been reported to have therapeutic 
effects in various other fields, such as radiation injury [222], 
pneumonia [144], atherosclerosis [147], tendon injury [223], 
and ischemic injury [224]. In summary, ApoEVs primar-
ily originate from stem cells, endothelial cells, and immune 
cells, which are already extensively studied for their roles in 
regeneration and repair. This suggests that injury and repair 
are closely linked, and the components of damaged cells 
seem to have a specific targeting relationship with the cells 
involved in repair. Future research into injury-derived Apo-
EVs promoting repair is promising. Leveraging this potential 
targeting relationship may provide a foundation for develop-
ing safe and effective therapeutic systems.

Applications based on engineered ApoEVs

Although ApoEVs from various cell types show significant 
intervention effects in immune regulation, tumor therapy, and 
tissue regeneration, natural cell-derived ApoEVs often do not 
meet therapeutic requirements due to the complexity of their 
components and limitations in production and preservation. 
Engineering modifications can enable the loading of specific 
therapeutic molecules, precise targeting, multifunctional syn-
ergy, and controlled release [225, 226]. These modifications 
can significantly enhance the therapeutic effects of ApoEVs 
while avoiding potential risks, thus offering broader pros-
pects for their future clinical applications [227]. In this sec-
tion, we systematically summarize the applications of engi-
neered ApoEVs in biotherapy, aiming to provide broader 
perspectives for future research (Fig. 6) (Table 3).

Immunomodulation

To meet the demands for precision, efficiency, and stability in 
the practical application of inflammation regulation, engineered 
ApoEVs have been developed. These ApoEVs primarily uti-
lize the PS-mediated “eat-me” signal to target immune cells 
for modulation [228]. They can be categorized into mimetic 
and engineered systems based on their fabrication techniques, 
typically reprogramming macrophages and microglia to 
enhance reparative cell populations and diminish inflammatory 
responses. For instance, Jin et al. created eNABHAL by coat-
ing mesoporous silica nanoparticles loaded with hexyl 5-ami-
nolevulinate hydrochloride (HAL) with neutrophil-derived 
apoptotic body membranes (NABM), mimicking apoptotic 
neutrophils to reprogram macrophages and resolve inflamma-
tion after myocardial infarction (MI) (Fig. 7A-B). eNABHAL, 
carrying adhesion molecules from neutrophil ApoBDs, targets 
damaged cardiac endothelial cells (Fig. 7C-D). In vitro co-
culture systems demonstrated that eNABHAL is engulfed by 
cardiomyocytes and macrophages, with a notable accumula-
tion in macrophages, indicating specific targeting (Fig. 7E). 
Within macrophages, eNABHAL promotes M2 polarization via 
phagocytosis and HAL’s antioxidant properties (Fig. 7F). Con-
sistently, in vivo studies revealed that eNABHAL exhibits signifi-
cant cardiac accumulation (Fig. 7G), increases the number of 
CD206 + macrophages (Fig. 7H), facilitates myocardial repair 
post-MI, and reduces infarct size and fibrosis (Fig. 7I) [229].

Beyond engineered ApoEVs, mimicking ApoEVs using 
biomaterials, such as PS-functionalized liposomes to target 
macrophages, is also a viable approach. These mimetic sys-
tems are specifically recognized and phagocytosed by mac-
rophages within atherosclerotic plaques, aiding in inflamma-
tion resolution and plaque stabilization [230]. Notably, the 
exposure of PS on ApoEVs often results in rapid clearance 
by monocytes/macrophages, limiting their circulation time, 
especially during intravenous administration.



	 Med-X            (2024) 2:27    27   Page 20 of 33

Table 3   Applications based on engineered ApoEVs

Therapeutic systems Target cells Applications Functions Ref

Type Materials Cargoes Types Diseases

Mimicking Lipid-PEG QD Macrophages Immunomodula-
tion

/ Imaging or drug 
delivery

 [258]

Mimicking Zwitterionic poly-
mers

/ Macrophages Immunomodula-
tion

/ Inhibiting inflam-
mation

 [259]

Mimicking Poly (HEMA-co-
MPS)

/ Macrophages Immunomodula-
tion

/ Inhibiting inflam-
mation

 [260]

Mimicking Lipid-PEG PIO Macrophages Immunomodula-
tion

Atherosclerosis Upregulating anti-
inflammatory 
macrophages

 [230]

Mimicking Lipid JQ1 Macrophages Immunomodula-
tion

OA Reducing synovial 
inflammation

 [240]

Mimicking PLGA / Macrophages Immunomodula-
tion

Footpad inflam-
mation

Inhibiting inflam-
mation

 [228]

Mimicking PLGA
Mimicking Poly (MPS) / Macrophages Immunomodula-

tion
/ Inhibiting inflam-

mation
 [261]

Mimicking Poly (BMA-st-
HEMA)

/ Microglia Immunomodula-
tion

Neurodegenerative 
disease

Inhibiting inflam-
mation

 [262]

Mimicking Poly (BMA-co-
HEMA-co-MPS)

/ Microglia Immunomodula-
tion

Neurological 
disorders

Inhibiting inflam-
mation

 [263]

Mimicking MSNs microRNA-21, 
curcumin

Macrophages Immunomodula-
tion

Skin would Promoting M2 
polarization

 [29]

Mimicking PLGA SOD/CAT, CSF Macrophages, 
monocytes

Immunomodula-
tion

Lung injury Promoting inflam-
mation resolu-
tion

 [264]

Engineering ApoBDs ASO Microglia Immunomodula-
tion

PD Inhibiting inflam-
mation

 [265]

Engineering ApoBDs CAT​ Microglia Immunomodula-
tion

Ischemic stroke Inhibiting inflam-
mation

 [266]

Engineering ApoBDs HAL Macrophages Immunomodula-
tion

MI Promoting inflam-
mation resolu-
tion

 [229]

Engineering ApoBDs FP1Au NPs Macrophages Immunomodula-
tion

Septic arthritis Detecting intracel-
lular pathogen

 [267]

Mimicking PLGA TMP195 DCs Cancer therapy HCC Enhancing immu-
notherapy and 
chemotherapy 
for tumors

 [268]

Mimicking Lipid-PEG / Macrophages Cancer therapy Breast tumor Improving anti-
cancer activity

 [31]

Engineering ApoBDs IR820 Macrophages Cancer therapy Breast tumor Regulating tumor 
microenviron-
ment

 [231]

Engineering ApoBDs CPT, PR104A Tumor cells Cancer therapy Breast tumor Facilitating deep 
penetration of 
drugs

 [269]

Engineering ApoBDs cGAMP DCs Cancer therapy Breast tumor Boosting the adap-
tive immunity

 [270]

Engineering ApoBDs Saporin, siRNA Tumor cells Cancer therapy Breast tumor Reducing 
clearance and 
enhancing tar-
geted accumula-
tion

 [271]
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Cancer therapy

The application of ApoEVs in cancer therapy has gained 
increasing attention, with various mimetic and engineered 
systems based on ApoEVs demonstrating significant anti-
tumor effects across different cancer types [231, 232]. 
Shi et al. discovered that during the apoptosis of MSCs, 

particles loaded with bortezomib (BTZ) encapsulated in 
polycarbonate (PC) could be incorporated into ApoEVs, 
facilitating therapy for MM (Fig. 8A). Notably, most PC-
vesicles were produced during the mid-apoptosis stage, 
approximately 3–4.5 h after staurosporine (STS) induc-
tion (Fig. 8B). Morphological analysis of these vesicles 
revealed that PC-apoVs maintained a complete membrane 

DOX Doxorubicin, TKI Tyrosine kinase inhibitor, PEG Polyethylene glycol, QD Quantum dot, PIO Pioglitazone, PLGA Poly (lactic-co-glycolic 
acid), MPS Methacryloyloxyethyl phosphorylserine, MSNs Mesoporous silica nanoparticles, SOD/CAT​ Superoxide dismutase/catalase, CSF Col-
ony-stimulating factor, ASO Antisense oligonucleotide, PD Parkinson’s disease, HCC Hepatocellular carcinoma, cGAMP 2′,3′-cyclic guanosine 
monophosphate-adenosine monophosphate, HDDT HA − dendrimer (Den) − DOX − tyrosine kinase inhibitor (TKI), DFO Deferoxamine

Table 3   (continued)

Therapeutic systems Target cells Applications Functions Ref

Type Materials Cargoes Types Diseases

Engineering ApoBDs CpG ODN Macrophages Cancer therapy Breast tumor Targeting and 
polarizing mac-
rophages

 [234]

Engineering ApoEVs HDDT DCs Cancer therapy Breast tumor Boosting sys-
temic immune 
responses

 [232]

Engineering ApoEVs BTZ Tumor cells Cancer therapy MM Improving thera-
peutic efficacy in 
tumor killing

 [233]

Engineering ApoBDs DOX, IGG Macrophages Cancer therapy Glioma Enhancing 
photothermal-
chemotherapeu-
tic effect

 [272]

Engineering ApoBDs AuNR-CpG Monocytes Cancer therapy Lymphoma Enhancing intratu-
moral accumu-
lation and immu-
nostimulation

 [235]

Mimicking Lipid / Macrophages Regeneration and 
healing

Skin would Promoting 
M2-like 
macrophage 
polarization

 [273]

Engineering ApoBDs DFO ECs Regeneration and 
healing

Diabetic wounds Promoting new 
blood vessel 
formation

 [236]

Engineering ApoBDs / ECs, macrophages Regeneration and 
healing

Intrauterine adhe-
sions

Reducing fibrosis 
and promoting 
endometrial 
regeneration

 [274]

Engineering ApoEVs / Platelet Regeneration and 
healing

Traumatic hemor-
rhage

Enhancing coagu-
lation

 [275]

Engineering ApoEVs / ECs, macrophages Regeneration and 
healing

Implant osseointe-
gration

Promoting 
angiogenesis and 
osteogenesis

 [276]

Engineering ApoEVs / Macrophages Regeneration and 
healing

Osteonecrosis Promoting 
M2-like 
macrophage 
polarization

 [277]

Engineering ApoEVs α-M Regeneration and 
healing

Ischemic stroke Regulating 
immunological 
response, angio-
genesis, and cell 
proliferation

 [237]



	 Med-X            (2024) 2:27    27   Page 22 of 33

structure, indistinguishable from natural apoVs, suggesting 
that PC loading does not compromise the structural integ-
rity of ApoEVs (Fig. 8C). The loading efficiency of PC 
nanoparticles in the apoptotic encapsulation system (AES) 
of apoptotic MSCs was markedly enhanced compared to 
ultrasonic encapsulation, indicating that AES is a superior 
technique for generating PC-apoVs (Fig. 8D). In vitro tumor 

cytotoxicity assays indicated that PC-apoVs accumulated 
more significantly in cultured MM cells (5TGM1), exhib-
iting potent antitumor effects (Fig. 8E-F). In a 5TGM1-
induced MM mouse model, intravenous administration of 
BTZ/PC-apoVs significantly suppressed MM cell growth 
and pathological infiltration, as assessed by live imaging 
(Fig. 8G-H). Hematoxylin and eosin (H&E) staining of 

Fig. 7   Engineered neutrophil apoptotic bodies for MI treatment. A Scheme of the eNABs construction. B Diagram depicting eNABs therapy 
for modulating inflammation in MI. C eNABs retain adhesion molecules inherited from Neu-ABs. D Fluorescence images representing eNABs 
adhering to inflamed endothelium in vitro. Scale bar = 50 μm. E Fluorescence images showing eNABs (red) engulfed by macrophages (white) 
and cardiomyocytes (green) in a coculture setting. F Fluorescence images representing macrophage phenotypes and the proportion of iNOS/
CD206-positive cells. Scale bar = 50 μm. G Fluorescence imaging ex vivo of the major organs 3 h after injection. H Fluorescence images show-
ing representative iNOS + and CD206 + macrophages in heart tissue sections. Scale bar = 50 μm. I Masson’s trichrome staining and infarct size 
quantification. Reprinted with permission from Ref [229]
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the distal femurs in MM mice showed reduced trabecular 
bone area (Fig. 8I). Additionally, BTZ/PC-apoV therapy 
also ameliorated acute kidney injury caused by increased 
IgG2b deposits in renal tubules, providing robust evidence 
supporting the therapeutic potential of engineered ApoEVs 
in cancer treatment (Fig. 8J) [233].

Beyond direct drug delivery to tumor cells, ApoEVs can 
also manipulate tumor immunity through their unique inter-
actions with phagocytic cells, thereby exerting antitumor 

effects. Li and colleagues engineered cancer cell ApoBDs 
loaded with CpG oligodeoxyribonucleotides (CpG ODN) as 
cancer vaccines to enhance immunotherapy by alleviating 
immunosuppression via cascade amplification. CpG ODN 
induces polarization of macrophages towards the M1 pheno-
type, leading to significant production of TNF-α, which acti-
vates cell division control protein 42 (Cdc42) [234]. Intrigu-
ingly, ApoEVs are extensively phagocytosed by monocytes 
in the bloodstream, a feature that can be exploited to enhance 

Fig. 8   Nano-bortezomib encapsulation in apoptotic stem cell-derived vesicles for enhanced multiple myeloma therapy. A A detailed schematic 
diagram depicting the step-by-step process of PC-apoV generation. B The process of generating and secreting PC-apoVs in apoptotic MSCs. 
Scale bar = 10  μm. C Comprehensive 2D and 3D visualizations of apoVs and PC-apoVs. Scale bar = 1  μm. D The loading efficiency of PC 
nanoparticles in PC-apoVs and U-PC-apoVs. E Representative immunofluorescence images showing MM cells (5TGM1) co-incubated with 
PC, apoVs, or PC-apoVs for a duration of 12 h. Scale bar = 10 μm. F Flow cytometry data demonstrated the proportion of Annexin V-positive 
apoptotic 5TGM1 cells post-treatment with BTZ/PC-apoVs, BTZ/PC, and natural apoVs. G Illustration of experimental design. H In vivo fluo-
rescence imaging of mice and quantification. I H&E staining of the distal femurs. Scale bar = 0.5 mm. J H&E staining of kidney tissues. Scale 
bar = 20 μm. Reprinted with permission from Ref [233]
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their delivery to deep tumor tissues. Following this concept, 
Tan et al. developed ApoBDs-encapsulated nanomedicine 
using CpG immunoadjuvant-modified gold-silver nanorods 
(AuNR-CpG) as a model. Once injected into the vascula-
ture, AuNR-CpG is ingested by monocytes that then leverage 
their natural tumor-homing capabilities to actively infiltrate 
the tumor core. This cell-mediated delivery system not only 
efficiently ablates primary tumors but also triggers a robust 
immune response, preventing tumor metastasis and recur-
rence [235]. Thus, modifying ApoEVs to enhance their 
tumor specificity and deep tissue infiltration capabilities 
represents a promising research direction for future cancer 
therapies.

Regeneration and healing

The regenerative and reparative applications of ApoEVs are 
driven not only by their rich content of bioactive molecules 
but also by their specific interactions with immune cells, 
endothelial cells, and stem cells [213]. Artificial modifi-
cation or mimetic techniques can enhance the therapeutic 
potential of ApoEVs, enabling multifaceted synergistic 
therapies [236]. Recently, researchers have created MAP-
functionalized α-M-loaded ApoVs (α-M/ApoV-MAP) by 
functionalizing α-mangostin (α-M)-induced MSC-derived 
ApoVs with a metalloproteinase-activatable cell-penetrating 
peptide (MAP) (Fig. 9A). Both α-M/ApoV and OX-ApoV 
(ApoVs without α-M) exhibited Annexin V positivity, 
indicating the presence of PS on their surfaces (Fig. 9B). 
Coomassie brilliant blue staining revealed the substantial 
presence of MSC-derived proteins within ApoVs, indi-
cating their potential to transport active molecules from 
MSCs to target cells (Fig. 9C). In vitro drug release studies 
demonstrated that α-M release from α-M/ApoV and α-M/
ApoV-MAP was significantly slower than from free α-M, 
with MAP modification not altering the release profile of 
α-M in α-M/ApoV (Fig. 9D). In an oxygen–glucose depriva-
tion/reoxygenation (OGD/R) model, OX-ApoV, α-M/ApoV, 
and free α-M all showed significant reactive oxygen species 
(ROS) scavenging, suggesting neuroprotective effects under 
ischemic conditions (Fig. 9E). Additionally, the effects of 
ApoVs on the proliferation, migration, and tube formation 
of brain capillary endothelial cells (BCECs) were evaluated. 
The results showed that OX-ApoV and α-M/ApoV promoted 
robust tubular structure formation in BCECs on Matrigel, 
highlighting the pro-angiogenic properties of ApoVs 
(Fig. 9F-G). In the presence of matrix metalloproteinases 
(MMP-2/9), MAP can be cleaved to expose an arginine-
rich cell-penetrating peptide (RRR​RRR​RRR), facilitating 
the entry of ApoVs into cells at injury sites and their accu-
mulation in lesion areas. Brain fluorescence imaging indi-
cated that α-M/ApoV-MAP accumulation in the ischemic 

hemisphere was significantly higher than that of α-M/ApoV 
from 12 h post-administration, with this enhanced accumula-
tion persisting up to 48 h (Fig. 9H). This improved targeting 
ability significantly reduced brain infarct size (Fig. 9I) [237].

Challenges and prospects

ApoEVs can be described as the final emissaries of a cell, 
delivering critical signals to recipient cells during their 
clearance [159, 238]. In contrast to exosomes and MVs, 
ApoEVs exhibit distinct characteristics in terms of pro-
duction, metabolism, size, cargoes, and molecular markers 
[166]. As our understanding of their microstructure and 
properties deepens, ApoEVs are increasingly recognized 
for their potential in various biomedical applications.

From a functional perspective, ApoEVs offer inher-
ent advantages over other types of EVs. Their high yield 
addresses the supply constraints in ApoEV-based applica-
tions. Specific molecules on ApoEV surfaces, such as PS, 
facilitate targeted interactions with phagocytes, enhancing 
the precision of EV-based therapies in inflammation and tis-
sue regeneration [67]. Furthermore, ApoEVs are enriched 
with various cargoes, especially nucleic acids, which are piv-
otal in gene regulation. ApoEVs also play a role in pathogen 
dissemination. For example, ApoBDs derived from T cells 
infected with HIV-1 can facilitate the transmission of HIV-1 
to HK2 cells, HRPTEC, and primary renal tubular cells [45]. 
Inhibiting the formation of ApoEVs can mitigate pathogen 
spread, providing new intervention targets for infectious dis-
eases. Additionally, ApoEVs are implicated in coagulation. 
For instance, melanoma-derived ApoEVs induce coagula-
tion more efficiently than exosomes, and tumor-derived Apo-
EVs exhibit greater procoagulant activity than their parent 
cells, primarily due to the presence of TFs and PS [239]. 
Future research may uncover more mechanisms, including 
those involved in embryonic development.

The engineering of ApoEV-based systems primarily 
focuses on several key aspects: I) the targeted recognition of 
ApoEVs by immune cells, significantly influencing antigen 
presentation and the remodeling of immune cell functions; 
II) the communication between ApoEVs and stem cells 
or endothelial cells in the local microenvironment, which 
plays a crucial role in tissue regeneration and injury repair; 
III) the targeted interaction of ApoEVs with the circulating 
monocyte/macrophage system, enabling ApoEVs to act as 
intermediate carriers for the delivery of live cells. Current 
methodologies often involve the direct modification of natu-
ral ApoEVs or the incorporation of therapeutic agents and 
the utilization of biocompatible materials to replace natural 
ApoEVs as carriers, modifying them with specific mark-
ers such as PS [240]. Although these systems vary in their 



Med-X            (2024) 2:27 	 Page 25 of 33     27 

functional mechanisms and pathways, the underlying theo-
retical principles are largely unified.

However, the clinical translation of ApoEVs encounters 
several significant challenges, such as the coagulation issues 
mentioned earlier. Additionally, the inherent heterogeneity 
of ApoEVs is a major concern. ApoEVs derived from iden-
tical cell sources can exhibit considerable variation in size, 
cargoes, and biological properties. This heterogeneity can 
adversely affect their ability to traverse physiological bar-
riers and their targeting efficiency, leading to variable and 
sometimes opposing functional outcomes. Moreover, the 

properties and functions of ApoEVs are influenced by the 
induction, isolation, and preservation methods employed. 
Most experimental protocols induce apoptosis in parental 
cells using agents such as STS, serum deprivation, or UV 
irradiation [241]. While some studies have compared the 
impact of different apoptotic induction methods on ApoEVs 
functionality, comprehensive investigations are necessary 
to fully understand these effects. Gradient centrifugation 
remains the primary technique for isolating ApoEVs, yet 
different centrifugation speeds significantly affect the enrich-
ment of their cargoes and impurities.

Fig. 9   Precision-engineered apoptotic vesicle delivery mechanism for ischemic stroke therapy. A Preparation of α-M/ApoV-MAP. B Representa-
tive micrographs illustrating Annexin V (green) staining in ApoVs. Scale bar = 20 μm. C Analysis of protein composition in MSCs and ApoVs 
using Coomassie staining. D α-M release profiles of ApoVs. E ROS level of OGD/R-treated PC-12 cells. Scale bar = 50 μm. F Tube formation 
assay. Scale bar = 50 μm. G Quantification of tube formation. H Fluorescence intensity of ApoVs in lesion region (I) TTC staining of brain 
slices and quantification of infarct area. Reprinted with permission from Ref [237]
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Future research needs to focus on the precise mechanisms 
of ApoEV formation and cargoes loading. Understanding 
how ApoEVs select their cargoes will provide more pos-
sibilities for their application and clinical translation. Addi-
tionally, standardized guidelines for the nomenclature, iso-
lation, concentration, storage, and standard procedures of 
ApoEVs need to be established to enhance the reliability 
and reproducibility of EVs research. Furthermore, studies 
on the short-term and long-term side effects of exogenous 
ApoEV therapy, as well as on the metabolic pathways and 
metabolic safety, need to be strengthened. Overall, while the 
research on ApoEVs is challenging, their immense potential 
warrants continuous exploration.

Conclusion

In conclusion, ApoEVs are not simply cellular debris from 
dying cells. ApoEVs play a significant regulatory role in 
intercellular communication, making them promising can-
didates for various biomedical applications such as disease 
diagnosis, immunomodulation, cancer therapy, regenerative 
therapy, and drug delivery. The diverse cargoes carried by 
ApoEVs and their specific interactions with recipient cells 
underpin these functions. Despite substantial progress in the 
field of ApoEVs, several challenges remain for their clini-
cal application. Further research is necessary to identify 
the therapeutic components in ApoEVs and understand the 
mechanisms by which ApoEVs exert their effects on target 
cells. Additionally, strategies must be developed to harness 
the phagocytic function of immune cells while mitigating 
the rapid in vivo clearance of ApoEVs. According to recent 
studies, ApoEVs are expected to become superior drug car-
riers, opening new avenues for biomedical applications and 
disease treatment.
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