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Abstract
Throughout history, the development of artificial intelligence, especially artificial neural networks, has been continuously 
influenced by a deeper understanding of the brain. This influence includes the development of the neocognitron, considered 
a precursor to convolutional neural networks. The emerging field of NeuroAI posits that leveraging neuroscience knowledge 
could significantly advance AI by imbuing networks with enhanced capabilities. Unlike the human brain, which features 
a variety of morphologically and functionally distinct neurons, artificial neural networks typically rely on a homogeneous 
neuron model. In the human brain, the diversity of neurons facilitates a wide range of intelligent behaviors. Given that 
artificial networks aim to mimic the human brain, incorporating a diversity of neuron models could address key challenges 
in artificial intelligence, such as efficiency, interpretability, and memory capacity. This perspective begins by examining 
the basics of biological neuronal diversity and how biological neurons transmit and process information. We then explore 
research efforts to design novel neuron models for artificial networks and discuss the potential benefits of neuronal diver‑
sity, including applications in several critical areas. Finally, we address the challenges and future directions for integrating 
neuronal diversity into artificial networks, highlighting its potential to enrich NeuroAI.
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• NeuroAI is an emerging field advocating that neuroscience can always serve as a think tank in the development of AI.
• This perspective summarizes recent works in introducing neuronal diversity, the widely observed biological phenomenon 

in our brain, into deep learning.
• This perspective ponders the future directions and challenges of integrating neuronal diversity into artificial networks.
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Introduction

We are experiencing the third wave of the artificial intelli‑
gence revolution. Deep learning, represented by deep artifi‑
cial neural networks, has been dominating numerous impor‑
tant research fields in the past decade [1–3]. The tale of 
artificial neural networks dates back to mimicking nervous 
systems [4] in 1943, where McCulloch and Pitts abstracted 
a nervous system as a net of neurons, and each neuron was 
modeled with a “threshold logic” because the neuron exhib‑
its an all‑or‑none behavior. Then, Hebb was engaged by the 
connectionism idea and proposed the rule of Hebbian learn‑
ing—neurons that fire together should be wired together [5]. 
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The Hebbian rule now still plays an important role in neural 
networks and computational neuroscience to this day. Later, 
Rosenblatt extended McCulloch and Pitts’s idea to propose 
the Perceptron [6] that computes the inner product of the 
input and the Perceptron’s internal parameters followed by 
a nonlinear activation. The Perceptron is the simplest net‑
work structure whose weights and bias are automatically 
learned by contrasting the outputs of the Perceptron and the 
target. However, the Perceptron was suggested to have an 
extremely limited expressive ability in Minsky and Papert’s 
book [7], i.e., the Perceptron cannot even execute the XOR 
logic. Hence, the research on the Perceptron, unfortunately, 
was dramatically slowed. Until 1980s, the designs of Hop‑
field networks [8] and Boltzmann machines [9] greatly aided 
the resurgence of interest in neural networks. With the re‑
invention of the backpropagation algorithm [10, 11], studies 
of neural networks were rapidly advancing: many novel net‑
work models (LSTM [12], autoencoder [13], neocognitron 
[14], CNN [15]) were established, and finally caught the 
imagination of the world in 2012 by the AlexNet [16]’s top 
performance on the ImageNet [17].

The brain is the most intelligent system we have ever 
known so far. Throughout history, the development of 
artificial neural networks has been open to and constantly 
inspired by the increasingly deepened understanding of the 
brain [18]. Although after drawing inspiration from neu‑
roscience, artificial neural networks would usually follow 
their own paths to fit the demands of real‑world tasks. In the 
past decades, due to tens of billions of dollars invested into 
neuroscience such as NIH BRAIN initiative,1 a great amount 
of knowledge regarding the brain has been amassed, which 
can provide an ample source for applying principles of brain 
intelligence to artificial neural networks. Therefore, our 
opinion is that neuroscience is still critical to the advances 
of artificial neural networks, given the incomparable capabil‑
ity of the human brain and an ever‑growing understanding of 
brain intelligence. Our opinion well aligns with the premise 
of an emerging interdisciplinary field—NeuroAI [18] whose 
overarching goal is to catalyze the next generation of AI 
by endowing a network with more human‑like capabilities. 
For the time being, although a human brain and an artificial 
neural network serve fundamentally different purposes, it 
is crystal clear that the existing artificial network still goes 
far behind our human brain from the following engineering 
perspectives:

Efficiency

With the advent of big models, the size of a neural network 
becomes increasingly larger. To train such a model to a 

practical point, well‑curated big data and considerable power 
need to be supplied [19]. For example, the well‑performing 
language model GPT‑3 has 175 billion parameters, and its 
training requires hundreds of GPUs running a few months 
on 45 TB text data [20]. In contrast, a human brain per‑
forms its incredible feat by managing billions of neurons 
and coordinating trillions of connections at extremely low 
power (< presumably 20W) [21]. This gap is because our 
brain is an efficient concept learner that can learn complex 
objects from just a few examples [22]. The efficiency issue 
gains more and more traction in the background of combat‑
ing global warming and carbon neutrality [23], as the AI 
models, particularly big language models are widely recog‑
nized as a significant carbon emitter [24]. Environmentalists 
have raised the criticism that oftentimes, the exhaustive trial‑
and‑error fine‑tuning only leads to little performance gain. 
According to the carbon footprint computation, the training 
of the BERT model has a carbon footprint close to a person’s 
one round‑trip trans‑America flight.2

Interpretability

A neural network is notoriously a black box [25]. Although 
a network performs quite well in real‑world tasks, it is hard 
to explain the underlying mechanism. Questions are often 
asked what is the function of certain neurons, layers, blocks, 
etc. and how they impact the model’s decision‑making. 
However, only limited success is achieved for these ques‑
tions. Interpretability studies are divided into two branches 
[25]: post hoc interpretation and ad hoc interpretable mod‑
eling. It was argued that post hoc interpretation cannot be 
completely faithful to the original model because if it can 
be, it becomes the original model [26]. What’s worse is one 
can hardly know the nuance between the post hoc interpreta‑
tion and the original model. But ad hoc interpretable mod‑
eling may suffer from model expressibility in accomplishing 
transparency. As opposed to deep models, the decision pro‑
cess in the human is highly tractable. Modern neuroscience 
attributes conscious acts to electrical and chemical changes 
within and across neurons. Visualization of working regions 
and neurons spatially and temporally can also be carried out 
well by modern brain imaging techniques such as fMRI [27].

Memory

Catastrophic forgetting is a common issue of connectionist 
models [28, 29], i.e., artificial neural networks are incapa‑
ble of learning new information without forgetting what is 

1 https:// brain initi ative. nih. gov

2 https:// www. techn ology review. com/ 2019/ 06/ 06/ 239031/ train ing‑a‑ 
single‑ ai‑ model‑ can‑ emit‑ as‑ much‑ carbon‑ as‑ five‑ cars‑ in‑ their‑ lifet 
imes/

https://braininitiative.nih.gov
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
https://www.technologyreview.com/2019/06/06/239031/training-a-single-ai-model-can-emit-as-much-carbon-as-five-cars-in-their-lifetimes/
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previously learned. When a network is trained to learn con‑
secutive tasks, what was learned from the previous task is 
easy to be interrupted by what is learned from the current 
task. This is because the weights trained for the earlier task 
have to be changed to meet the objective of the new task. 
The existing solutions to overcome catastrophic forgetting 
either require explicit retraining using the old data (so‑called 
interleaved learning [30]) or only show efficacy in a specific 
type of memory or network structures [31]. Compared to 
the artificial network, our human brain has evolved effec‑
tive mechanisms to avoid catastrophic forgetting [32], e.g., 
sleeping [33] can consolidate the outcome of the awake‑
state learning. Although these mechanisms remain to be 
completely understood, more and more experiments on the 
neuronal level showed that sleeping facilitates the potential 
of target neurons to be evoked [34, 35].

Robustness

Lacking robustness is another Achilles’ heel of a neural 
network [36]. It was often reported that a neural network 
is easy to trick [37]. Sometimes, adding noise that is indis‑
cernible to a human can completely change a network’s 
prediction [38]. Later, it was shown that a neural network 
can be severely interfered with by common perturbation 
[39], such as occlusion, blur in an image, etc. Due to the 
widespread deployment of AI models in mission‑critical 
scenarios, the robustness issue of neural networks has 

received lots of attention. Compared to a neural network, 
humans usually won’t get confused despite small changes 
such as mask, shift, distortion, natural corruptions, and styl‑
ish changes in an image.

To promote neural networks to a higher level of intel‑
ligence, based on NeuroAI, we believe that at present an 
actionable way is to explicitly identify the differences 
between brain and artificial neural networks and then make 
efforts to mitigate these differences. Clearly, the current 
mainstream neural network models are remarkedly differ‑
ent from the biological neural system, and one primary 
distinction is that neural networks lack the neuronal diver‑
sity that is everywhere in the human brain [40]. Different 
from artificial networks that are built on a single universal 
primitive neuron type, the brain has numerous morpho‑
logically and functionally different neurons [41]. With 
no exaggeration, neuronal diversity is an enabling factor 
for all kinds of intelligent behaviors [42]. More and more 
works showed the biological effect of neuronal diversity. 
Padmanabhan and Urban examined the outputs from a sin‑
gle type of neuron and the mitral cells of the mouse olfac‑
tory bulb, and found that diverse populations were able to 
code for twofold more information than their homogeneous 
counterparts using this intrinsic heterogeneity [43]. Since 
the artificial neural network is a miniature of the biological 
neural network, introducing neuronal diversity should be 
able to shed light on the aforementioned problems of the 
artificial neural network.

Fig. 1  The rapid growth of 
the number of articles on the 
research on new neurons in 
deep learning. The data are 
based on the search in the Web 
of Science on December 12, 
2022, with the time range from 
2000 to 2022 according to the 
keyword “Deep Learning New 
Neurons”
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Biological neuronal diversity

The extraordinary neuronal diversity originates from neuron 
differentiation [44], a complicated process to obtain differ‑
ent types of neurons that motivates many molecular signals 
to drive electrophysiological, morphological, and transcrip‑
tional changes in a neuron. Neuronal diversity is reflected 
by different molecular, morphological, physiological, con‑
nectional features [41], and so on. Here, we briefly intro‑
duce morphological and functional diversity: the former is 
the most obvious diversity, and the latter is instrumental to 
understanding different functionalities of a brain.

Morphological diversity

As a defining characteristic of neuronal types, morphologi‑
cal diversity, as shown in Figs. 1 and 2, includes diversity 
in projection patterns, bifurcation patterns, the density of 
branches, etc. According to the structural differences found 
in microscopy, neuroscientists previously have roughly 
divided neurons into four categories: unipolar, bipolar, 
multipolar, and pseudo‑polar. Unipolar and pseudo‑polar 
neurons have only one neurite extending from the soma, 
while that of a pseudo‑polar neuron will soon split into two 
branches with a T‑shaped structure directing to peripheral 
receptors and central spinal cords, respectively. While bipo‑
lar neurons extend protrusions from each end of the soma 
and evolve into dendrites and axons, respectively, multipolar 
neurons have one axon and several dendrites, which are the 
most common neuron type, constituting many complex cen‑
tral neural networks. Furthermore, more precise morphology 
studies reveal more concrete diversity from morphometry 
features to projection patterns on the regional level [41, 45].

Functional diversity

Functional diversity can be seen at structural, neuronal, sys‑
tematic, and behavioral levels. Neuronal functional diversity 
is a natural result of evolution in order to conduct complex 
behaviors in human life. Let us take three basic functions as 
examples to explain.

A human has five basic senses: sight, smell, touch, taste, 
and hearing, along with other senses including balance, 
proprioception, interior space emotion, time spiciness, etc. 
Hence, there exist sensory receptors that can specifically 
translate stimuli of different forms such as temperature, 
light, force, and sound, and then transmit impulses to the 
central nervous system. Once a sensory stimulus is applied 
to the exposed body part where the dendrite of the corre‑
sponding receptor neuron exists, the signal cascade and 
active signal pathway will be transferred, respectively. Then 
the functional sensory neural network starts to work. For 
example, as the human nose smells the flower, the olfactory 
sensory neurons located in the olfactory mucosa will be fired 
and evoke the olfactory network. Then a series of reactive 
events will happen.

Brain regions are often tied with functionalities. There 
are multiple brain regions whose neurons are involved in 
motion. Those motor neurons usually correspond to certain 
muscles. The more agile the body parts are, the more deli‑
cate the movement is, and the bigger will the corresponding 
neuron population grow to. Despite the target diversity, neu‑
rons from different motor regions also differ in function with 
regard to the process and degree of motion. For example, 
neurons in the primary motor area will lead to the simple 
movement of body muscles on the opposite side after the 
stimulus. The premotor area related to the gross shrinkage 

Fig. 2  Neurons exhibiting an 
extraordinary morphological 
diversity. The shape classifica‑
tions of neurons include uni‑
polar, bipolar, pseudounipolar, 
multipolar, and so on
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of muscle is all over the body, responsible for some aspects 
of motor control such as movement preparation, sensory 
instruction, or direct control of certain movements. The 
supplementary motor area serves a number of motor sug‑
gestion functions including internally generated motor plan‑
ning, sequence planning of movements, and coordination of 
both sides of the body. More subtle mechanisms of delicate 
motor have been studied in a long term with technique on 
different levels [46].

The GPS system in our brain is attributed to place neu‑
rons, grid neurons, direction neurons, boundary neurons, 
speed neurons, etc. These neurons coordinate together so 
that our brain knows where we are, where we are heading, 
and how far we move. When entering a particular place, a 
place neuron [47] is fired. However, place neurons alone 
cannot explain how a human navigates the environment. A 
coordinate system is established after grid neurons [48] are 
respectively activated, as one traverses a set of small regions. 
These roughly equal regions are arranged in a periodic array 
to cover the entire open environment. Together with bound‑
ary neurons [49] encoding the space borderline, a mental 
map of the physical world is built, which allows for global 
precise positioning. In addition, neurons such as direction 
neurons [50], speed neurons [51], and angular head velocity 
neurons [52] inform the brain of characters of the motion in 
the environment and help modulate it. For example, when 
one makes a turn at a corner of a street, the direction neuron 
is fired to monitor the direction of movement. If one is in a 
hurry to arrive at the destination, the speed neuron is acti‑
vated to supply the speed information.

The functional diversity of neurons is everywhere in the 
brain. In fact, a basic observation regarding the brain is that 
all complicated intelligence behaviors are a consequence of 
motivating different types of neurons. For example, different 
navigation neurons collaborate complementarily to realize 
all necessary functionalities for navigation.

Characteristics of bilogical neurons

Per the premise of NeuroAI, one should retrospect how the 
information is transmitted and processed throughout a bio‑
logical neuron [53] before introducing new neurons into arti‑
ficial networks. To endow a network with more human‑like 
capabilities, the neural mechanism should first be discussed. 
Roughly, it is divided into three steps: signal transduction 
(inbound), compartmentalized dendritic computation, and 
signal transduction (outbound). Our retrospection is centered 
around the macroscopic mechanisms and hallmarks relevant 
to neural computation. Unless necessary, we will not go into 
the level of cellular molecular biochemistry.

Signal Transduction (Inbound)

Neurons can transduce almost all types of physical signals 
into electrical signals, e.g., optical [54, 55], mechanical [56], 
biochemical [57]. Within the biological neural network, the 
most common is biochemical signal transduction. This trans‑
duction of a neuron is carried out by two categories of trans‑
ducers of the current neuron: Membrane receptor‑mediated 
type and nuclear receptor‑mediated type. Two classic sub‑
categories of the former are ligand‑gated ion channels and 
transmembrane G‑protein coupling receptors. The former 
[58] will open to allow the ion flux via a conformational 
change when the receptor binds a chemical messenger such 
as neurotransmitters; the latter [59] will bind with neuro‑
transmitters and activate coupling G proteins on the mem‑
brane, which either directly causes the ion channel to open 
via protein–protein interaction or activates the enzyme that 
expedites the synthesis of the intracellular second messenger 
towards a lagged [60], cascaded [61], and longer‑lasting [62] 
modulation3 to ion channels. Finally, an electrical signal will 
be stimulated and further processed.

Dendritic computation

In the early days, dendritic trees were believed to solely 
receive and transport information to the axon (passive). The 
pioneer of modern neuroscience once asked “Why do den‑
dritic trees even exist” [63]? However, with the progress 
of sharp electrodes [64], ever‑growing evidence suggests 
that the dendritic branches are compartmentalized func‑
tional units (active). They play a fundamental role in many 
key computations such as coincidence detection, detection 
of motion direction, and storage of multiple input features 
(Chapter 15, [65]). Thus, a dendritic branch is a compart‑
mentalized computation unit enabled and defined by the pas‑
sive and active properties. The integrated dendritic com‑
putation, therefore, is more complicated and needs better 
understanding.

Passive properties

Due to the intrinsic resistance, the most salient passive 
property of dendrites is its attenuation effect whose role 
is to keep the signal local and sparse. The attenuation rate 
decreases with the diameter and increases with the length 
[66, 67]. A branchpoint, which is a bifurcation between the 
apical trunk and oblique dendrite, also serves as a strong 
attenuator to restrict the active signal transmission. In addi‑
tion to the attenuation effect, dendritic morphology can 

3 https:// openb ooks. lib. msu. edu/ neuro scien ce/ chapt er/ neuro trans mit‑
ter‑ action‑ g‑ prote in‑ coupl ed‑ recep tors/

https://openbooks.lib.msu.edu/neuroscience/chapter/neurotransmitter-action-g-protein-coupled-receptors/
https://openbooks.lib.msu.edu/neuroscience/chapter/neurotransmitter-action-g-protein-coupled-receptors/
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affect the firing rate and firing pattern as well [68, 69]. Fur‑
thermore, the signal propagates into distal dendritic arbors 
more readily than towards the soma (Chapter 14, [65]). Such 
an asymmetry can empower the neuron with the ability to 
infer the direction of motion based on the activation order 
of the somatic response. Finally, the dendritic structure is 
shown to facilitate the sparse coding in biological networks 
[70] that are associated with energy efficiency [71], feature 
discrimination [72], and memory capacity [73].

Active properties

A dendrite is embedded with a variety of ionic channels that 
enable powerful signal processing abilities and assist the 
information transmission intracellularly.

i) Voltage‑gated channels are nonlinear functional devices. 
For example, no action potential is generated when the 
input current is below a certain threshold. When the 
input current exceeds the action potential threshold, 
plenty of ion channels will open and generate an abrupt 
change in membrane potential. The action potential 
cancels the attenuation effect of the morphology and 
ensures the reliable propagation of the signal [74]. The 
dendritic spikes can exhibit complicated input–output 
relations other than the all‑or‑none relation. Recently, 
Gidon et al. [75] showed that the human layer 2/3 corti‑
cal neurons produce maximal activation when a stimulus 
is close to zero, and the activation is dampened when the 
stimulus gets stronger. Interaction between ion channels 
adds another layer of nonlinearity, e.g., calcium‑depend‑
ent potassium channels [76] link potassium channels 
with calcium channels, which realizes a more precise 
regulation for neuronal excitability.

ii) Voltage‑gated channels are highly discriminatory, which 
enhances the dendrites’ computation power. Typically, 
voltage‑gated channels are only open to one kind of ions 
over another. As such, those channels are named after 
the most easily passed ions. Furthermore, for the same 
type of ion channels, there exist a variety of subtypes 
that differ in their voltage dependence, kinetics, single‑
channel conductance, and so on. Different ion channels 
present different firing patterns [74].

iii) Active dendrites respond in a location‑dependent and 
time‑dependent manner, implicating their spatiotempo‑
ral processing ability [77, 78]. For example, dendritic 
sodium spikes are propagatable throughout the dendritic 
tree [79], while the distal apical trunk tends to initialize 
calcium spikes that can only spread to the apical den‑
dritic tree [80, 81]. In addition, both sodium and potas‑
sium spikes participate in coincidence detection [79, 
82, 83]. For example, the potassium spike was activated 

when distal and proximal dendritic regions of cortical 
neurons are synchronously activated [83].

Signal transduction (Outbound)

Transmitting information from a neuron’s interior to its exte‑
rior has two fundamentally different modes. One is the direct 
electrical transfer via a specialized interconnected connec‑
tion called the gap junction [84]. The transfer through gap 
junctions is very fast. The other mode is chemical transfer 
via synapses, i.e., the presynaptic neuron releases the so‑
called neurohormone [85] or neurotransmitter [86] that will 
diffuse to the target neuron. The chemical transfer converts 
the electrical signal into the chemical release.

i) The chemical transfer can exert different effects, depend‑
ing on the types of released neurotransmitters [87]: The 
excitatory neurotransmitters fire the target neuron, while 
the inhibitory ones inhibit the target neuron, and modu‑
latory neurotransmitters affect the effects of other chemi‑
cal messengers. In most situations, one synapse can only 
be either excitatory or inhibitory.

ii) The chemical transfer is subjected to random noise [74]. 
Even when the action potential is absent, a small depo‑
larization is recorded in the target neuron due to the 
spontaneous random release of a small number of neu‑
rotransmitters from the presynaptic terminal.

iii) The relation between the level of action potentials and 
the amount of the released neurotransmitter is nonlinear. 
When the voltage is low, only a few calcium channels 
are open. The high calcium concentration is achieved 
near those open channels, thereby only facilitating the 
fusion of nearby vesicles. When the voltage slightly 
increases, more channels open; therefore, a relatively 
small and uniform calcium concentration emerges. But 
the calcium level may not be sufficiently high to trigger 
subsequent processes [88].

Overall, despite the complicated information processing 
of a biological neuron, several salient characteristics should 
be noted: i) nonlinearity ubiquitously exists in every stage of 
information processing, not just in membrane channels; ii) 
a dendrite not only serves information transmission but also 
serve as compartmentalized computation unit; iii) neurons 
have the spatiotemporal information ability.

Figure 3 shows what kinds of computational proper‑
ties of biological neurons remain unseen in the current 
mainstream artificial neurons. We divide the operations of 
artificial neurons into two stages: feature aggregation and 
nonlinear activation. It is widely believed that the nonlinear 
activation function in artificial neurons corresponds to the 
voltage/ligand‑gated channels of biological neurons. How‑
ever, in biological neurons, except for the outbound signal 
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transduction, the roles of voltage/ligand‑gated channels are 
to assist the information transmission and processing intra‑
cellularly, instead of emitting information extra‑cellularly. 
Therefore, we think that the outbound signal transduction of 
biological neurons corresponds to the nonlinear activation of 
artificial neurons, while the inbound signal transduction and 
dendritic computation together are in analogy to the feature 
aggregation of artificial neurons.

Neuronal diversity in artificial neural 
networks

In this section, we classify the studies of introducing neu‑
ronal diversity into four categories: activation design, poly‑
nomial neurons, dendritic neurons, and spiking neurons. 
Note that complex‑valued neurons [89, 90] are not included 
because its idea is based on the need of addressing complex‑
valued data.

Activation design

Nowadays, the mainstream neuron type computes the inner 
product between the input and the connectivity parameters 
of upper neurons followed by a nonlinear activation func‑
tion, which is mathematically formulated as

(1)𝜎
(
x
⊤
w + b

)
,

where x is the input, w, b are parameters, and σ is the activa‑
tion function. Past years have witnessed a plethora of novel 
activation functions being designed [91]. Three different 
properties are often considered in developing a novel acti‑
vation function: i) As mentioned earlier, an activation func‑
tion should be nonlinear, which is a necessity to guarantee a 
network has a sufficient discrimination ability. Nonlinearity 
is also bioplausible, i.e., the outbound signal transduction in 
a biological neuron is nonlinear. ii) An activation function 
should allow a normal gradient flow across layers when a 
network is deep, i.e., no gradient vanishment and explosion. 
iii) It should facilitate information transmission to expedite 
the extraction of useful features from data. Table 1 sum‑
marizes several representative activation function designs. 
Now, we illustrate them in detail.

Logistic sigmoid/tanh

The logistic sigmoid [92] was extensively used in the early 
stage of neural networks. However, its employment in a deep 
network suffers gradient vanishment and poor convergence. 
The gradient is killed when the pre‑activation value is super 
high or low, while the non‑zero‑centered nature forces the 
convergence trajectory to go zig‑zag [91]. Tanh is of zero‑
centric nature, but its computational complexity is high, 
and still subjected to the gradient issue. Several variants of 
Tanh were proposed to enlarge the range of output function 
[15] and overcome the gradient vanishment problem [93, 
94, 106].

Fig. 3  A schematic representation illustrating the computational properties of biological neurons that remain largely unseen in current main‑
stream artificial neurons. We categorize the operations of artificial neurons into two stages: feature aggregation and nonlinear activation. In 
biological neurons, in addition to outbound signal transduction, voltage and ligand‑gated channels facilitate information transmission and pro‑
cessing intracellularly, rather than emitting information extracellularly. The outbound signal transduction of biological neurons corresponds to 
the nonlinear activation of artificial neurons, while the inbound signal transduction and dendritic computations collectively resemble the feature 
aggregation performed by artificial neurons
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Rectified linear unit (ReLU)

ReLU [96] is currently the most popular activation function 
thanks to its excellent scalability. However, some research‑
ers argued that ReLU causes the loss of useful information 
in negative parts. To address this issue, several variants that 
allow the passage of negative parts were proposed such as 
Leaky‑ReLU [95], Concatenate‑ReLU [97], GenLU [98], 
Randomly Translational ReLU [99], ELU [100]. Besides, 
ReLU was believed to have a limited discriminative ability 
because it just assumes a linear relation in the positive range. 
Therefore, several variants were proposed to modify ReLU 
towards an enhanced non‑linearity such as SReLU [101] and 
Natural Logarithm ReLU [102].

Radial Basis Function (RBF): A radial basis function acti‑
vation is usually used in the radial basis function network 
[103], which is formulated as

where � is often taken as a Gaussian function 
�
(
||x − ci||

)
= exp(−�i||x − ci||2) . The radial basis func‑

tion network can be regarded as a fuzzy logic system such 
as the Takagi–Sugeno rule system [107] whose rule is of the 
format: “if x ∈ set A and y ∈ set B, then z = f (x, y)” [108].

Bioplausible activation

One notable class of activation functions are biologically‑
inspired. Georgescu et al. [104] proposed a bioplausible 
activation function by mathematically modeling the newly‑
discovered action potential pattern in a study [75] published in 
Science. Bhumbra [105] introduced a bionodal root activation 
based on the input–output relation acquired from physiologi‑
cal measurement. Electrophysiological recordings show that 
only a moderate increment in inputs is required to drive an 

(2)�(x) =
∑N

i
ai�(||x − ci||),

Table 1  A summary of different types of activation functions

Type Representative Example Mathematical Expression

Sigmoid/Tanh Type Sigmoid [92] 1

1+e−x

PSF [93] 1

(1+e−x)m

ISigmoid [94]

ISigmoid(x) =

⎧
⎪
⎨
⎪
⎩

a(x − a) + 1∕(1 + e−a), x ≤ −a

1∕(1 + e−x),−a < x < a

a(x + a) + 1∕(1 + e−a), x ≥ a

Tanh [95] (ex − e
−x)∕(ex + e

−x)

scaled Tanh [15] A
(
e
Bx − e

−Bx
)
∕
(
e
Bx + e

−Bx
)

ReLU Type ReLU [96]
ReLU(x) =

{
x, x ≤ 0

0, x < 0

Leaky‑ReLU [95]
Leaky ReLU(x) =

{
x, x ≥ 0

𝛼 ∙ x, x < 0

Concatenate‑ReLU [97] [ReLU(x),ReLU(− x)]
GenLU [98] GenLU(x) = sgn(x)max{|x|+ b,0}
Randomly Translational ReLU [99]

RTReLU(x) =

{
x + a, x + a ≥ 0

0, x + a ≤ 0

ELU [100]

 
ELU(x) =

{
x, x ≥ 0

𝛼(ex − 1), x < 0

SReLU [101]

SReLU(x) =

⎧
⎪
⎨
⎪
⎩

tr + ar(x − tr), x ≥ tr

x, tl ≤ x ≤ tr

tl + al(x − tl), x ≤ tl

Natural Logarithm ReLU [102] NTReLU(x) = ln(β max{0,x} + 1)
Radial Basis Function Activation Gaussian [103] ρ(x) = exp(β∥x − c∥2)
Bioplausible Activation apical dendrite activation (ADA) [104] ADA(x) = min{0,x} + max{0,x}exp(− αx + c)

Bionodal root unit (BRU) [105]
BRU(x) =

{
(r2x + 1)

1

r , x ≥ 0

erz −
1

r
, x < 0

Noisy Activation [106] ϕ(x) = h(x) + s(x), where s(x) is random noise
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action potential for some neurons [105]. Then, after an ini‑
tial linear relation, the input–output curve partially saturates 
because the voltage‑gated channels become less sensitive.

Noisy activation

The idea of noisy activation is to inject noise into the acti‑
vation function when it is saturated. Such an injection can 
make gradients flow easily [106].

Polynomial neuron

Compared to the activation function, altering feature aggre‑
gation is much less explored. Per our earlier analysis, the 
nonlinearity in biological neurons is embedded not only in 
the outbound signal transduction but also in the inbound 
signal transduction and dendritic computation. But the inner 
product is a linear operation, which does not align with non‑
linearity of the inbound signal transduction and dendritic 
computation. The use of polynomial neurons is to endow 
an artificial neuron with the nonlinear feature processing 
ability in the aggregation phase to better fit strongly nonlin‑
ear information. The story of polynomial neurons originates 
from the Group Method of Data Handling (GMDH [109]), 
which takes a high‑order polynomial as a feature extractor:

where xi is the i‑th input, and ai, aij, aijk are coefficients for 
interaction terms. Usually, only quadratic terms are retained 
in this model to avoid nonlinear explosion for high‑dimen‑
sional inputs. Furthermore, with GMDH, the so‑called 

(3)
Y
(
x1, x2,⋯ , xn

)
=

∑n

i
aixi +

∑n

i

∑n

j
aijxixj +

∑n

i

∑n

j

∑n

k
aijkxixjxk +⋯ ,

higher‑order unit was defined in [110–112] which is math‑
ematically formulated as

where �(⋅) is a nonlinear activation function. To achieve a 
balance between maintaining the power of high‑order units 
and parameter efficiency, Milenkoiv et al. [113] only utilized 
linear and quadratic terms and proposed to use an annealing 
technique to find optimal parameters.

Recently, high‑order, particularly quadratic units were 
revisited [114–122]. In the work by Chrysos et al. [119], 
the complexity of higher‑order units as described by Eq. (5) 
were greatly reduced via tensor decomposition and factor 
sharing; therefore, they scaled polynomial networks into 
a very deep paradigm to achieve the cutting‑edge perfor‑
mance on several tasks. In [114, 123, 124], a quadratic 
convolutional filter of the complexity O(n2) was proposed 
to replace the linear filter. In [116], a parabolic neuron: 
�
((
xTw1 + b1

)(
xTw2 + b2

))
 was proposed for deep learning, 

while in [125], 𝜎
(
(x⊙ x)Tw

)
 was proposed. Fan et al. [126]. 

proposed a simplified quadratic neuron with O(3n) param‑
eters: 𝜎(

(
xTw1 + b1

)(
xTw2 + b2

)
+ (x⊙ x)Tw3) and further 

argued that higher‑order neurons are not necessary because 
the fundamental theorem of algebra suggests that any poly‑
nomial can be factorized into a product of linear and quad‑
ratic terms [127]. Neuron designs in [116, 125] are special 
cases of that in [126]. Bu et al. [128] utilized the quadratic 
neuron, which is equivalent to [116] when combining xTw3 
into�

((
xTw1

)(
xTw2

))
 . Xu et al.’s design [118] is the same 

as [128]. Liu and Wang [129] defined the so‑called Gang 
neuron, which is essentially a polynomial neuron under a 
particular tensor decomposition.

(4)y = �(Y(x1, x2,⋯ , xn)),

Fig. 4  Three exemplary new types of neuron designs: polynomial neurons, dendritic neurons, and spiking neurons. Polynomial neurons, den‑
dritic neurons, and spiking neurons conform to the three salient characteristics of biological neurons A) ubiquitous nonlinearity in information 
processing; B) the active dendrite;C) the spatiotemporal information ability, respectively
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Dendritic neuron

The current mainstream neuron type is a point neuron which 
computes a single weighted sum of all synapses. Such modeling 
actually ignores the active computation of the dendritic fibers 
and only takes them as a passive transmission medium. How‑
ever, as aforementioned, dendrites are active and serve as com‑
partmentalized information processing units to assist a neuron to 
perform different kinds of tasks. Thus, can we go from a linear 
and passive neuron (point neuron) to a nonlinear and active 
neuron with extensive dendrite branching and extra nonlinear 
computation? (Chapter 14, [65]). Along this direction, a feasible 
design is to first compute a subset of nonlinear terms within a 
subset of computational units, then combine the responses of 
these units and nonlinearly map their total response (Chapter 16, 
[65]), as shown in Fig. 4. For example, dendritic branches were 
simulated to compute the sum of products (pi‑sigma units [130, 
131]) and to implement Boolean logic networks [132–134]. Shin 
et al. reported the so‑called pi‑sigma unit [135],

where hji is the output of the j‑th sigma unit for the i‑th 
output element yi , and wkji is the weight of the j‑th sigma 
unit associated with the input element xk . The cluster‑sen‑
sitive phenomenon was discovered that given a fixed num‑
ber of synaptic inputs, concentrating the activated synapses 
of intermediate size can lead to the largest post‑synaptic 
response [136–138]. Based on this phenomenon, the “clus‑
teron” was proposed in [136] whose output is given by

where ai = wixi(
∑

j∈Di
wjxj) is the net excitatory input at syn‑

apse i , and Di = {i − r, i − r + 1,⋯ , i,⋯ , i + r − 1, i + r} is 
a set of neighbors of the synapse i. It can be seen that the 
clusteron is a constrained sigma‑pi unit with products of 
neighboring synapses. Furthermore, Jadi et al. [139] pro‑
posed a two‑stage dendritic neuron:

where FI is an experimentally‑determined frequency‑current 
relation, and dj = �(

∑
iwijxi) . However, such a dendritic neu‑

ron is essentially isomorphic to a two‑layer network. Hawk‑
ins and Ahmad [140] and Grewal et al. [141] developed a 
type of dendritic neurons, as shown in Fig. 4, where each 
dendritic branch contains multiple synapses such that each 
branch can detect multiple input patterns. At the same time, 
Grewal et al. showed that such a type of dendritic neurons 
can alleviate catastrophic forgetting. In the aspect of hard‑
ware, Li et al. [142] experimentally demonstrated that neural 
networks with artificial dendrites are power‑efficient.

(5)h =
∑

k
wkjixk + �ji, and yi = �

(∏
j
hji

)
,

(6)y = g(
∑N

i
ai),

(7)y = FI(
∑

j
Wjdj),

Spiking neuron

The current mainstream neuron types are regarded as the 
second‑generation neurons that can only process static 
amplitude information. The neurons that have the spati‑
otemporal information ability are referred to as the third‑
generation neurons, which are primarily of the “integrate‑
and‑fire” type [143–145] via spikes [146].

For example, the leaky integrator neuron is shown in 
Fig. 4. Its neuronal dynamics consists of two parts: (i) an 
equation that describes the change of the transmemebrane 
potential difference; (ii) a mechanism to generate a spike. 
We use the law of current conservation to derive the inte‑
gration equation of spiking neurons. The current is split 
into two components:

where Δut is the transmembrane potential difference, It is the 
current from synapses or the external injection independent 
of the membrane potential, R is the leaky resistance, and C 
is the membrane capacitance. When Δut hits a threshold, 
it forms a spike and then set to zero. Assuming a constant 
external current injection and no synaptic current, we have 
the following:

Next, the mechanism of generating a spike is via a spike 
response model [147], which simulates the refractory prop‑
erties of a neuron because the membrane potential depends 
on the time of the last spike. There are other variants of the 
integrate‑and‑fire model: the linear integrate‑and‑fire neuron 
[148] which replaces Δut∕R in Eq. (8) with a constant term; 
the quadratic integrate‑and‑fire neuron [149–151] which 
adds a quadratic term u2 to the right side of Eq. (8); the 
exponential integrate‑and‑fire neuron [152] which adds an 
exponential term regarding ut to the right side of Eq. (8). As 
mentioned earlier, the information transmission in a neuron 
is coupled with noise. For example, the voltage‑gated chan‑
nels randomly open and close, and the vesicles randomly 
fuse with a neuron’s membrane to release neurotransmit‑
ters. Thus, a diffusion variant of spiking neurons [153, 154] 
was established by incorporating the stochastic nature of 
the current:

where µ is the average synaptic current, and �t is a Gaussian 
noise.

The second‑generation neurons are trained with gradi‑
ent descent, whereas the training of spiking neurons is dif‑
ficult due to the non‑differentiability. Trainability has been 

(8)It = IR + IC =
Δut

R
+ C

d

dt
Δut,

(9)Δut = IR(1 − e
−

t

RC ).

(10)It = � +
√
2RC�t =

Δut

R
+ C

d

dt
Δut,
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a major bottleneck in the development of spiking networks. 
Now there are roughly three approaches to train a spiking 
network.

The idea of conversion‑based methods is to map a well‑
performing conventional network into a spiking network, 
which requires parameter recalibration and activation res‑
caling [155–157]. This method helps a spiking network to 
showcase the state‑of‑the‑art performance on the ImageNet. 
However, such a conversion may be unfaithful when time 
steps are low.

The second method is to employ surrogate gradients 
[158–160]. The spiking network is hard to train because 
spiking neurons fire discrete spikes that are non‑differ‑
entiable. To solve this problem, differentiable activation 
functions are employed as surrogates. Moreover, unroll‑
ing a spiking neuron in a discrete, recursive form perfectly 
corresponds to a recurrent neural network. As a result, the 
training of a spiking network can be done via backpropa‑
gation through time (BPTT) [161]. The caveat of surro‑
gate gradient methods is the high computation overhead 
given a large time step. Spike‑timing‑dependent plasticity 
(STDP) approaches [162–164] gain great interest recently. 
SDTP methods are with local learning, following the Heb‑
bian learning rule and updating weights in an unsupervised 
manner. However, STDP methods are hard to scale to mul‑
tilayer spiking networks, and have limited performance on 
large‑scale datasets.

Remarks

Polynomial neurons, dendritic neurons, and spiking neurons 
conform to the three salient characteristics of biological neu‑
rons: i) ubiquitous nonlinearity in information processing; ii) 
the active dendrite; iii) the spatiotemporal information abil‑
ity, respectively. But polynomial neurons, dendritic neurons, 
and spiking neurons are not exactly the same as the ways of 
biological neurons. We argue that artificial networks should 
draw inspiration instead of copying from neuroscience. In 
other words, designing new neurons should prioritize the 
need for real‑world problems instead of blindly imitating 
biological neurons.

Potential gains

So far, we have discussed new types of neurons, with the 
motivation of filling the gap between the current mainstream 
neuron type and the real‑world biological neuron. Next, 
more importantly, what can we gain from these new neu‑
rons? i.e., how can neuronal diversity truly bring benefits to 
the aforementioned critical issues in artificial networks? In 
the following, let us illustrate the potential gains of incorpo‑
rating neuronal diversity into artificial networks.

Efficiency

In the information world, most learning tasks establish a 
nonlinear mapping. Intuitively, it is more efficient to incor‑
porate a nonlinear computation unit to learn a nonlinear 
function. Although the existing mainstream neurons can do 
the universal approximation when connected to a network, 
it is computationally heavy to use mainstream neurons to 
represent other neuron types because such a representation 
needs far more neurons, compared to directly adopting other 
neuron types in building a model. It was proved that there 
exists a class of functions that can be approximated by a 
heterogeneous network made of both quadratic and conven‑
tional neurons with a polynomial number of neurons, but 
is hard to approximate by a purely conventional or quad‑
ratic network unless an exponential number of neurons are 
used [165]. Moreover, regarding the training cost, using the 
homogeneous type of neurons takes the extra learning cost 
to wire neurons specifically and orchestrate the learning pro‑
cess relative to using different neurons beforehand. In other 
words, involving neuronal diversity in artificial networks is 
an embodiment of modularization at the neuronal level. The 
development of modern industry has confirmed the superi‑
ority of modularization in efficiency. Table 2 summarizes 
the recent work that addresses the efficiency of introducing 
neuronal diversity.

Due to the spatiotemporal information processing abil‑
ity, spiking neurons are highly energy‑efficient. Unlike the 
conventional neuron that keeps the working status all the 
time, the spiking neuron idles unless it receives a spike from 
some events.

Table 2  Studies regarding the efficiency of quadratic neurons

Work Description

[166] This paper investigates the superiority of quadratic over conventional neural networks for classification of gaussian mixture data
[167] This paper investigates the efficiency of quadratic networks over a wide variety of tasks including the image classification on the 

ImageNet, image segmentation, point cloud segmentation, and so on
[168] This paper investigates the efficiency of mixing quadratic and conventional neurons in the task of anomaly detection
[169] This paper proposes to design task‑based neurons and evaluate its efficiency compared to conventional and quadratic neurons
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Memory

The reason why a connectionist model suffers catastrophic 
forgetting is that training such a model for a new task cata‑
strophically interferes with the knowledge amassed in the 
previous task. In contrast, although humans tend to gradu‑
ally forget previous information as getting old, learning new 
knowledge while catastrophically forgetting old knowledge 
rarely happens. Achieving lifelong learning is difficult 
because of the stability‑plasticity dilemma: the model has to 
maintain both plasticity to acquire new knowledge and sta‑
bility to prevent the consolidated knowledge from being dis‑
mantled. Roughly, three types of computational approaches 
have been proposed to address the catastrophic forgetting 
[170]: i) imposing constraints on the level of plasticity to 
protect the consolidated knowledge [171]; ii) allocating 
additional neural resources for new tasks [172]; iii) using 
two complementary learning systems dedicated to learning 
new information and replaying old experiences, respectively 
[173]. Inspired by the second type of approaches, we find 
that polynomial neurons can offer a novel view to achieve 
lifelong learning by enabling a network to be internally pro‑
gressive. Thus, the knowledge of old tasks is stored instead 
of destroyed when facing new tasks. As shown in Fig. 5(a), 
traditionally, given a new task, a new sub‑network is cre‑
ated, and lateral links with the old tasks are learned. We 
refer to such a network as an externally progressive net‑
work. In contrast, assuming a polynomial neuron is used, 
as Fig. 5(b), tensor decomposition is doable to rearrange a 
polynomial neuron [119] into an internally compositional 
structure which encodes knowledge of a sequence of tasks 
into a hierarchy. Retaining old terms and adding new terms 
provides flexibility to balance old knowledge and the new. 
The internally progressive mechanism may apply to situa‑
tions where new tasks and old tasks are somewhat relevant.

Interpretability

One way to derive an interpretation from a model is to under‑
stand its components, as the entire complex system can be 
usually decomposed into a combination of many functional 
modules [174]. For example, Bau et al. [175] analyzed a 
CNN trained on the scene classification task and discovered 
via the receptive field analyses that each neuron matches 
certain object concepts. In the same vein, an exciting point 
about a polynomial neuron or other nonlinear neurons is that 
the neuron per se contains an internal attention mechanism. 
The following derivation shows how to cast the attention 
mechanism from a quadratic neuron [176]:

where x⊙ w
b + w

g
x
⊤
w
r can reflect where a neuron deems 

as important regions, in analogy to the attention mechanism.
Furthermore, in this light, all neurons with a nonlinear 

aggregation function are self‑explanatory. Suppose that a 
neuron is �(g(x)) , we conduct the Taylor expansion around 
0 for g(x) and remove the third and higher‑order terms:

 where Dg(0) is the partial derivative of g(x) at zero, and 
Hg(0) is the Hessian matrix of g(x) at zero. Clearly, the 
mainstream neuron type 𝜎(x⊤w + b) does not enjoy such a 
kind of self‑interpretability, which necessitates the involve‑
ment of new type of neurons in artificial networks for better 
interpretability.

(11)

𝜎(
(
x
⊤
w
r + br

)(
x
⊤
w
g + bg

)
+ (x⊙ x)⊤wb + c)

= 𝜎(x⊤wg
(
x
⊤
w
r + br

)
+ bgx⊤wr + bgbr + (x⊙ x)⊤wb)

= 𝜎(x⊤
(
w
g
(
x
⊤
w
r + br

))
+ x

⊤
w
rbg + x

⊤(x⊙ w
b))

= 𝜎(x⊤(x⊙ w
b + w

g
x
⊤
w
r + w

gbr + w
rbg)),

(12)
𝜎(g(x))

= 𝜎(g(0) + x
⊤Dg(0) + x

⊤Hg(0)x)

= 𝜎
(
g(0) + x

⊤(Dg(0) + Hg(0)x)
)
,

Fig. 5  Polynomial networks can work progressively to avoid catastrophic forgetting
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Representative applications

Since introducing neuronal diversity is a fundamental 
change instead of a slight modification for a neural network, 
it has a global impact on the research and development of 
artificial networks, with the promise of pushing a wide spec‑
trum of applications. Here, we discuss representative real‑
world applications in different important fields to illustrate 
the practical value of introducing neuronal diversity.

Medical imaging

X‑ray computed tomography (CT) is one of the most popular 
and important imaging modalities in hospitals and clinics. 
Although CT can offer critical clinical information, patients 
have to bear potential risks because X‑rays may cause 
genetic changes and cancer [177]. Therefore, reducing the 
radiation dose is an important problem in the CT field. How‑
ever, images reconstructed from the lower dose suffer from 
noise and other kinds of artifacts. In clinics, noise removal, 
texture preservation, and structure fidelity are three key 
aspects concerning radiologists. Algorithms should achieve 
a reasonable balance between these three aspects for a better 
clinical diagnosis.

Autoencoders [178] are a class of networks that consist of 
encoding and decoding parts. The encoding part attempts to 
learn a new representation, and the decoding part regener‑
ates the input from the learned representation. In [179], a 
quadratic autoencoder (Q‑AE) was proposed to process the 
low‑dose CT images, in hope that the quality of processed 
images can reach the level of images reconstructed from the 
normal‑dose CT. This Q‑AE model employs ReLU as activa‑
tion functions for all neurons, and has 5 quadratic convolu‑
tional layers in the encoding and 5 quadratic deconvolutional 
layers in the decoding, where each layer has 15 quadratic fil‑
ters of 5 × 5 , and symmetric layers are aggregated by resid‑
ual connections. The anonymous reader study on the Mayo 
low‑dose CT dataset revealed the superior performance of 
the quadratic autoencoder in terms of image denoising and 
model efficiency than other state‑of‑the‑art models.

Industrial informatics

The bearing faults are the most common source of faults in 
rotating machines such as wind turbines and aircraft engines 
[180]. To enhance the reliability of rotating machines and 
avoid economic loss, accurately diagnosing bearing faults 
is of great importance. Currently, a common and viable 
diagnosis method is to first measure vibration signals by 
attaching the measurement instrument to the rotating bearing 
[181], and then use an artificial network to classify the faulty 
signals from the normal. Despite great successes in bearing 

fault detection, artificial networks lack interpretability, i.e., 
it is hard to know if the model conforms to the physics prin‑
ciple when classifying fault signals out.

A convolutional neural network made of quadratic neu‑
rons (QCNN) was proposed for bearing fault diagnosis 
[176]. With the qttention mechanism derived earlier, the 
feature extraction process of QCNN and the physics princi‑
ple explaining why the model can deliver good classifica‑
tion performance are deciphered to a large extent. For exam‑
ple, by visualizing faulty bearing signals and the qttention 
maps, it was found that all the faulty areas were captured 
by QCNN. By comparing the raw signal and the qttention 
map in the frequency domain, it was discovered that QCNN 
favors bearing fault frequency elements over the shaft fre‑
quency elements.

Numerical computing

A general form of a non‑linear partial differential equation 
(PDE) can be expressed as f (u, �) = 0 , where f  is a non‑
linear operator performed on partial derivatives of the target 
variable u , and � represents the parameters of the PDE. In 
the realm of PDEs and numerical computing, two classes 
of problems are mainly concerned: (a) forward problems, 
which are to solve for the target variable u prescribed by the 
PDE, and (b) inverse problems, which involve learning the 
unknown parameters, � , of the PDE, given the observations 
of u at different timestamps.

Physics‑informed neural networks (PINNs) are a type of 
neural networks that consider the physical laws and prior 
knowledge governing the problem in model design and train‑
ing [182]. The prior knowledge of general physical laws is in 
the form of PDEs, and can be employed as a regularization 
for the training of a network, e.g., formulating the PDE equa‑
tion into a supervised loss function. Motivated by the non‑
linear approximation ability of quadratic networks, Bu et al. 
[128] proposed a quadratic residual network to solve the 
forward and inverse problems in PDEs. Following the origi‑
nal PINN framework, empirical results demonstrated that 
QResNet exhibits consistent advantages over conventional 
networks in terms of parameter efficiency and approximation 
accuracy. Let us take the Allen–Cahn equation [183] as an 
example to show why QResNet fits. The task is to predict u 
based on the PDE as follows:

and the initial condition. Discretizing this equation leads to

(13)�u

�t
− 0.0001 ⋅

�2u

�x2
+ 5u3 − 5u = 0,

(14)ut+1 = ut + 0.0001 ⋅
�2ut

�x2
− 5u3

t
− 5ut.
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Since the right‑hand side of Eq. 14 consists of a polyno‑
mial function regarding ut. Therefore, it is more suitable to 
use a quadratic neuron to learn it than a conventional neuron. 
Moreover, Eq. 14 contains a residual relation, which well fits 
a residual network.

Computer vision

Computer vision is an interdisciplinary field that enables a 
computer to derive a meaningful understanding from digi‑
tal images, videos, or other visual inputs [184]. Computer 
vision tasks concern acquiring, processing, analyzing, and 
understanding digital inputs such as image restoration, face 
recognition, and video tracking. Neural network models have 
been dominating computer vision since the tremendous suc‑
cess in classifying approximately 1.2 million images into 
1,000 classes in the ImageNet challenge [16]. As a drop‑in 
replacement, polynomial networks [119] have been applied 
to a plethora of computer vision tasks. It was empirically 
demonstrated that the polynomial networks produce com‑
petitive results in a large variety of computer vision tasks 
such as image recognition, face recognition, and image 
generation.

Challenges and outlooks

Neuronal synergy

To unleash the potential of neuronal diversity, the core prob‑
lem is how to make different neurons synergize together to 
maximize their strengths, as Fig. 6 shows. In the human 
brain, the activities of a large number of neurons are well 
coordinated. For example, parallel activities of neurons 
are observed to lie in a low‑dimensional manifold [185, 
186]. Although the underlying coordination mechanism 
remains unclear, we know that the coordination of differ‑
ent neurons in the brain is highly artful and efficient, e.g., 

the coordination of distant neurons is enabled not only via 
long‑range connections but also through heterogeneity in 
local connectivity [187]. Generally speaking, the learning 
of an artificial network is governed by the loss function and 
the optimization algorithm. There is no explicit algorithm 
suggesting how to synergize different types of neurons for 
the same task. Inspired by neural architecture search [188], a 
brute‑force means to accommodate this problem is neuronal 
cell search, which takes the neuronal type as the model’s 
hyperparameters to optimize in the framework of AutoML 
[189]. However, it is more desirable if neuroscience findings 
can shed light on some rule‑of‑thumb or useful inductive 
bias to guide neuronal synergy. For example, in the popula‑
tion coding theory, the collective responses of a population 
of neurons are to maximize the amount of information [190].

Task‑based neuron design

The past 10 years have witnessed a surge of many out‑
standing architectures, such as U‑Net [191], the pyramidal 
structure [192], and shortcuts [1, 193]. The central princi‑
ple behind these studies is designing a network architecture 
according to the needs of a task. In light of neuronal diver‑
sity, the neuronal type is also critical to the power of a neu‑
ral network. Thus, we ask the following question: Can the 
network design go from the task‑based architecture design 
to the task‑based neuron design? Our brain is exactly a task‑
based neuron designer, i.e., biological neurons have abun‑
dant functional diversity, which is a necessity for the brain 
to execute different tasks. The advantage of the task‑based 
neuron design over the task‑based architecture design is that 
task‑specific neurons contain useful implicit bias for the 
task. Thus, the network of these task‑specific neurons can 
integrate the task‑driven forces of all these neurons, which 
should be much stronger than the network of generic neurons 
with the same structure. Our conjecture is that the task‑based 
neuron design will escalate neural network research into a 
new stage and make advances in many previously‑believed 

Fig. 6  Different neurons should 
be synergized together to maxi‑
mize their strengths. Despite the 
diversity, neurons have several 
basic types (denoted by various 
shapes), and each type of neu‑
rons have similar but slightly 
different variants (denoted by 
various colors)



Med-X             (2025) 3:2  Page 15 of 21     2 

difficult tasks. Figures 7 and 8 showcases a three‑step road‑
map for the task‑based neuron design:

1) Build an elementary neuronal model via symbolic 
regression. Encouraged by the concept of linear regres‑
sion or polynomial regression, symbolic regression 
[194] is to search over the space of all possible math‑
ematical formulas regarding the input variables, starting 
from base functions such as logarithmic, trigonomet‑
ric, and exponential functions. Furthermore, the search 
space should be regularized to entitle the established 
neuron with the desirable properties, e.g., no gradient 
vanishment or explosion when connected to a network. 
For example, we can split the search space into two 
parts: the aggregation function and the activation func‑
tion.

2) Parameterize the learned elementary neuron to make its 
parameters trainable. Such a parameterization can be 
straightforwardly made by casting all coefficients in the 

elementary neuron as learnable parameters. However, 
for better efficiency and expressivity, selecting which 
coefficients to parameterize can be optimized based on 
the final performance.

3) Employ task‑based neurons in a network for validation 
and feedback. For example, according to the perfor‑
mance of the network, some base formulas in a task‑
based neuron might be pruned. Task‑based neurons can 
also facilitate multi‑task learning. With increasingly 
many task‑based neurons designed, a warehouse of neu‑
rons can be gradually established in which a knowledge 
graph and neuron‑based informatics could be developed.

Theoretical issues

Since the rise in 2012, deep learning has been criticized 
for lacking a fundamental theory. This embarrassment 

Fig. 7  A roadmap for designing and deploying task‑based neurons: i) build an elementary neuronal model by the symbolic regression; ii) param‑
eterize the acquired elementary neuron to make its parameters learnable; iii) employ task‑based neurons in a network for validation and feedback

Fig. 8  The goal and methods 
of neuroinformatics of artificial 
neurons and artificial networks
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has been greatly alleviated in recent years with the rapid 
development of deep learning theory. Expressivity‑wise, 
why a deep network performs superbly [195, 196] is well 
addressed by characterizing the complexity of a function 
expressed by a neural network, i.e., increasing depth can 
greatly maximize such a complexity measure compared to 
increasing width; the power of shortcuts are demonstrated 
as well [1], i.e., a network with shortcuts can express a far 
more complicated network than a network without short‑
cuts. Optimization‑wise, the neural tangent kernel theory 
suggests that the training of an infinitely wide network is 
equivalent to a kernel ridge regression [197]. The under‑
standing of the generalization ability of deep networks 
is also deepened by the discovery of the double descent 
phenomenon [198].

Notwithstanding, the existing theory provides an 
explanation for the simplest neuron that is based on an 
inner product and an activation function, which may 
not be applicable to other kinds of nonlinear neurons. 
In the context of neuronal diversity, we ask the follow‑
ing question for theorists to brainstorm: to what extent 
are the current theories scalable to heterogeneous net‑
works? Addressing this question is highly nontrivial 
in two senses. On the one hand, the philosophy behind 
homogeneous and heterogeneous networks varies greatly. 
The former implicitly assumes that a universal type of 
neurons can solve a wide class of complicated nonlinear 
problems, simply referred to as “one‑for‑all”. Such a phi‑
losophy is well supported by the universal approximation 
theorem [199]. However, the problem of this philosophy 
is practicality and efficiency, i.e., it may suffer the curse 
of dimensionality. In contrast, the latter assumes differ‑
ent types of neurons solve a specific problem, which is 
referred to as “all‑for‑one”. The loss of universality in 
heterogeneous networks adds a layer of complication 
to the theoretical analyses. The low‑hanging fruits may 
come from the efficiency analysis first by showing that 
the mode of “all‑for‑one” is more efficient than that of 
“one‑for‑all”. Then, the optimization and generalization 
properties can be further analyzed.

Neuroinformatics of artificial neurons and networks

Neuroinformatics is an interdisciplinary field that introduces 
informatics into neuroscience for data mining and informa‑
tion processing. With the large‑scale deployment of those 
task‑specific neurons into networks, methodologically, we 
think it is highly necessary to introduce tools of informatics 
into artificial neurons and networks to further extract infor‑
mation from different neurons and networks, referred to as 
neuroinformatics of artificial neurons. The goals of this kind 
of neuroinformatics are to make contributions to the next 
generation of AI by drawing insights into the information 
processing of biological networks, supporting brain‑inspired 
intelligence, and fertilizing the interpretability of artificial 
networks. To realize this goal, on the one hand, tools for 
analyzing and standardizing artificial neurons and networks 
should be developed; on the other hand, the database and 
knowledge graph can be built for various artificial neurons to 
supply ontology information about neuron fitness and rela‑
tions between different neurons, to advance the connectivity 
organization, and to instruct the multi‑module synergy.

Remark

Future research should particularly emphasize the identifica‑
tion of impactful applications of neuronal diversity or lever‑
age this concept to address real‑world challenges, thereby 
enhancing the relevance and success of neuronal diversity. 
Additionally, in light of the remarkable achievements of 
large language models, there is a pressing need to develop 
a large model that incorporates diverse types of neurons. 
Such a model could be computationally efficient, promoting 
widespread adoption in resource‑constrained environments, 
owing to the robust representational capabilities of innova‑
tive neurons at a fundamental level.

Resource summary

We list the useful resources about neuronal diversity in 
Table 3 for readers’ reference.

Table 3  A resource summary for neuronal diversity in artificial networks

Resource Type Description

QuadraLib Library QuadraLib is a library for the efficient optimization and design exploration of quadratic networks. The 
paper of QuadraLib won MLSys2022’s best paper award

Dr. Fenglei Fan’s GitHub Page Code Dr. Fenglei Fan’s GitHub Page summarizes a series of papers and associated code on quadratic net‑
works, including quadratic autoencoder and the training algorithm ReLinear

Polynomial Network Code This repertoire shows how to build a deep polynomial network and sparsify it with tensor decomposi‑
tion

Dendrite Book A comprehensive book covering all aspects of dendritic computation
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Conclusions

In this perspective, we have systematically introduced neuronal 
diversity into artificial networks, as a practice of NeuroAI, 
including biological background, the existing studies, chal‑
lenges, and future directions. We believe that neuronal diversity, 
the insight from NeuroAI, has the potential of elevating artifi‑
cial networks into a new age. Future efforts can be invested to 
demonstrate more and more killer applications of new neurons.
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